SUMMARYTwo efficient numerical methods for dealing with the stability of linear periodic systems are presented. Both methods combine the use of multivariable Floquet-Liapunov theory with an efficient numerical scheme for computing the transition matrix at the end of one period. The numerical properties of these methods are illustrated by applying them to the simple parametric excitation problem of a fixed end column. The practical value of these methods is shown by applying them to some helicopter rotor blade aeroelastic and structural dynamics problems. It is concluded that these methods are numerically efficient, general and practical for dealing with the stability of large periodic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.