Ocean acidification, a decrease in the pH in marine waters associated with rising atmospheric CO2 levels, is a serious threat to marine ecosystems. In this paper, we determine the effects of long-term exposure to near-future levels of ocean acidification on the growth, condition, calcification, and survival of juvenile red king crabs, Paralithodes camtschaticus, and Tanner crabs, Chionoecetes bairdi. Juveniles were reared in individual containers for nearly 200 days in flowing control (pH 8.0), pH 7.8, and pH 7.5 seawater at ambient temperatures (range 4.4–11.9 °C). In both species, survival decreased with pH, with 100% mortality of red king crabs occurring after 95 days in pH 7.5 water. Though the morphology of neither species was affected by acidification, both species grew slower in acidified water. At the end of the experiment, calcium concentration was measured in each crab and the dry mass and condition index of each crab were determined. Ocean acidification did not affect the calcium content of red king crab but did decrease the condition index, while it had the opposite effect on Tanner crabs, decreasing calcium content but leaving the condition index unchanged. This suggests that red king crab may be able to maintain calcification rates, but at a high energetic cost. The decrease in survival and growth of each species is likely to have a serious negative effect on their populations in the absence of evolutionary adaptation or acclimatization over the coming decades.
The aim was to assess the onset of brain stem death for two euthanasia methods—manual cervical dislocation (CD) versus the Koechner Euthanizing Device (KED). Over three days broilers of 36 (n = 60), 42 (n = 80), or 43 days old (n = 60) were euthanized. On days 2 and 3, a treatment was added in which the bird’s head was extended at a ~90˚ angle after application of the KED (KED+). On those days, gap size was recorded between the skull and atlas vertebra by 1-cm increments. The onset of brain death was assessed by recording the nictitating membrane reflex, gasping reflex and musculoskeletal movements (sec). Additionally, skin damage and blood loss were recorded (y/n). On all days, CD resulted in quicker loss of reflexes and movements compared to KED or KED+. Reflexes returned in 0–15% of CD birds, 50–55% of KED birds, and 40–60% of KED+ birds, possibly regaining consciousness. Skin damage occurred in 0% of CD birds, 68–95% of KED birds, and 85– 95% of KED+ birds. On day 2 (p = 0.065) and 3 (p = 0.008), KED birds had or tended to have a narrower skull-to-atlas gap compared to CD and KED+ birds. Based on our results, CD would be the recommended method for broilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.