The Netherlands launched a nationwide implementation study on non-invasive prenatal testing (NIPT) as a first-tier test offered to all pregnant women. This started on April 1, 2017 as the TRIDENT-2 study, licensed by the Dutch Ministry of Health. In the first year, NIPT was performed in 73,239 pregnancies (42% of all pregnancies), 7,239 (4%) chose first-trimester combined testing, and 54% did not participate. The number of trisomies 21 (239, 0.33%), 18 (49, 0.07%), and 13 (55, 0.08%) found in this study is comparable to earlier studies, but the Positive Predictive Values (PPV)-96% for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13-were higher than expected. Findings other than trisomy 21, 18, or 13 were reported on request of the pregnant women; 78% of women chose to have these reported. The number of additional findings was 207 (0.36%); these included other trisomies (101, 0.18%, PPV 6%, many of the remaining 94% of cases are likely confined placental mosaics and possibly clinically significant), structural chromosomal aberrations (95, 0.16%, PPV 32%,) and complex abnormal profiles indicative of maternal malignancies (11, 0.02%, PPV 64%). The implementation of genome-wide NIPT is under debate because the benefits of detecting other fetal chromosomal aberrations must be balanced against the risks of discordant positives, parental anxiety, and a potential increase in (invasive) diagnostic procedures. Our first-year data, including clinical data and laboratory follow-up data, will fuel this debate. Furthermore, we describe how NIPT can successfully be embedded into a national screening program with a single chain for prenatal care including counseling, testing, and follow-up.
There is increasing evidence that frontotemporal dementia and amyotrophic lateral sclerosis are part of a disease continuum. Recently, a hexanucleotide repeat expansion in C9orf72 was identified as a major cause of both sporadic and familial frontotemporal dementia and amyotrophic lateral sclerosis. The aim of this study was to investigate clinical and neuropathological characteristics of hexanucleotide repeat expansions in C9orf72 in a large cohort of Dutch patients with frontotemporal dementia. Repeat expansions were successfully determined in a cohort of 353 patients with sporadic or familial frontotemporal dementia with or without amyotrophic lateral sclerosis, and 522 neurologically normal controls. Immunohistochemistry was performed in a series of 10 brains from patients carrying expanded repeats using a panel of antibodies. In addition, the presence of RNA containing GGGGCC repeats in paraffin-embedded sections of post-mortem brain tissue was investigated using fluorescence in situ hybridization with a locked nucleic acid probe targeting the GGGGCC repeat. Hexanucleotide repeat expansions in C9orf72 were found in 37 patients with familial (28.7%) and five with sporadic frontotemporal dementia (2.2%). The mean age at onset was 56.9 ± 8.3 years (range 39-76), and disease duration 7.6 ± 4.6 years (range 1-22). The clinical phenotype of these patients varied between the behavioural variant of frontotemporal dementia (n = 34) and primary progressive aphasia (n = 8), with concomitant amyotrophic lateral sclerosis in seven patients. Predominant temporal atrophy on neuroimaging was present in 13 of 32 patients. Pathological examination of the 10 brains from patients carrying expanded repeats revealed frontotemporal lobar degeneration with neuronal transactive response DNA binding protein-positive inclusions of variable type, size and morphology in all brains. Fluorescence in situ hybridization analysis of brain material from patients with the repeat expansion, a microtubule-associated protein tau or a progranulin mutation, and controls did not show RNA-positive inclusions specific for brains with the GGGGCC repeat expansion. The hexanucleotide repeat expansion in C9orf72 is an important cause of frontotemporal dementia with and without amyotrophic lateral sclerosis, and is sometimes associated with primary progressive aphasia. Neuropathological hallmarks include neuronal and glial inclusions, and dystrophic neurites containing transactive response DNA binding protein. Future studies are needed to explain the wide variation in clinical presentation.
Myotonic dystrophy type 1 (DM1) is one of the most variable inherited human disorders. It is characterized by the involvement of multiple tissues and is caused by the expansion of a highly unstable CTG repeat. Variation in disease severity is partially accounted for by the number of CTG repeats inherited. However, the basis of the variable tissue-specific symptoms is unknown. We have determined that an unusual Dutch family co-segregating DM1, Charcot-Marie-Tooth neuropathy, encephalopathic attacks and early hearing loss, carries a complex variant repeat at the DM1 locus. The mutation comprises an expanded CTG tract at the 5'-end and a complex array of CTG repeats interspersed with multiple GGC and CCG repeats at the 3'-end. The complex variant repeat tract at the 3'-end of the array is relatively stable in both blood DNA and the maternal germ line, although the 5'-CTG tract remains genetically unstable and prone to expansion. Surprisingly though, even the pure 5'-CTG tract is more stable in blood DNA and the maternal germ line than archetypal DM1 alleles of a similar size. Complex variant repeats were also identified at the 3'-end of the CTG array of approximately 3-4% of unrelated DM1 patients. The observed polarity and the stabilizing effect of the variant repeats implicate a cis-acting modifier of mutational dynamics in the 3'-flanking DNA. The presence of such variant repeats very likely contributes toward the unusual symptoms in the Dutch family and additional symptomatic variation in DM1 via affects on both RNA toxicity and somatic instability.
Myotonic dystrophy is a relatively common type of muscular dystrophy, associated with a variety of systemic complications. Long term follow-up is difficult because of the slow progression. The objective of this study was to determine survival, age at death and causes of death in patients with the adult-onset type of myotonic dystrophy. A register of myotonic dystrophy patients was set up in Southern Limburg (the Netherlands), using data longitudinally collected over a 47-year period (1950-97). Survival for 180 patients (from the register) with adult-onset type myotonic dystrophy was established by the Kaplan-Meier method. The median survival was 60 years for males and 59 years for females. Survival of the patients was also estimated from the age of 15 years to the ages of 25, 45 and 65 years and compared with the expected survival of age- and sex-matched birth cohorts from the normal Dutch population. The observed survival to the ages of 25, 45 and 65 years was 99%, 88% and 18% compared with an expected survival of 99%, 95% and 78%, respectively. Thus, survival to the age of 65 in patients with adult-onset myotonic dystrophy is markedly reduced. A weak positive correlation between the CTG repeat length and younger age at death was found in the 13 patients studied (r = 0.50, P = 0.08). The cause of death could be determined in 70 of the 83 deceased patients. Pneumonia and cardiac arrhythmias were the most frequent primary causes of death, each occurring in approximately 30%, which was far more than expected for the general Dutch population. In addition, we assessed mobility in the years before death in a subgroup of 18 patients, as a reflection of the long-term physical handicap in myotonic dystrophy patients. Half of the patients studied were either partially or totally wheelchair-bound shortly before their death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.