Abstract--Performance testing of the model-scale CPA was recently completed at the University of Texas Center for Electromechanics. A major part of the project was the development of design and simulation codes that would accurately represent the performance of pulsed alternators. This paper discusses the components of the system and its operational sequence. Details of the performance simulation model are presented along with test data. The test result is compared to the predicted data.
Series arc faults are challenging to detect in low-voltage dc (LVDC) distribution systems because, unlike other fault types, series arc faults result in only small changes in the current and voltage waveforms. Though there have been several approaches proposed to detect series arc faults, each approach has its requirements and limitations. A step change in the current and voltage waveforms at the arc inception is one of the characteristic signatures of these faults that can be extracted without requiring one to sample the waveforms at a very high frequency. This characteristic feature is utilized to present a novel approach based on voltage differential protection to detect series arc faults in LVDC systems. The proposed method is demonstrated using an embedded controller and experimental data that emulate a hardware-in-the-loop (HIL) test environment. The successful detection of series arc faults on two sets of series arc fault experimental data validated the approach. The results presented also illustrate the computational feasibility in implementing the approach in a real-time environment using an embedded controller. In addition, the paper discusses the robustness of the approach to load changes and loss of time synchronization between measurements at the two terminals of the line.
With the advancements in composite technology several innovative applications present themselves that involve high-speed composite rotors spinning in a stator assembly. As rotational speeds and rotor tip speeds increase, these rotors must operate in low air pressure environments to minimize windage losses and thermal effects of being at high speed for long durations. Accurately predicting this windage loss for a specific geometry and operating conditions is very important for a proper design. It is also very important to know the relative heat distribution that is seen by the rotor and stator from this windage loss. Analysis tools to date do not have a coupled link that calculates windage loss and a resultant thermal distribution to the rotor and stator surfaces. This paper presents the design and fabrication of a test setup to measure the total windage loss and temperature distribution from a high-speed composite rotor in a stator structure. Rotor speeds up to 40,000 rpm and rotor tip speeds up to 900 m/s with pressure ranges from 0.1 torr to 10 torr were operating parameters during the testing. The paper will also present experimental data obtained during the testing. Experimental data obtained during the testing will be used to evaluate new analysis methods for predicting the windage loss and thermal distribution in new high-speed rotor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.