The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata. However, uncertainties in the magnitude and consequences of the physiological responses of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage. Here we use annually resolved long-term 13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the 13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by 0.76 ppmv, most consistent with moderate control towards a constant Ci=Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ±10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5%increases in European forest transpiration are calculated over the twentieth century.This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions
[1] It is currently not well known how coherent carbon and oxygen isotope chronologies from different species and sites are under temperate climate conditions. Here we investigated nine chronologies from Switzerland covering the last two centuries, including three deciduous species (Fagus sylvatica, Fraxinus excelsior, and Quercus petraea) and three conifer species (Abies alba, Picea abies, and Pinus sylvestris) from sites neither strongly limited by temperature nor precipitation. All of the chronologies except Fraxinus were significantly correlated to at least one other chronology. Correlations between different species of the same site were of similar strength to correlations between the sites. We observed a strong common high-frequency (interannual) signal for the d 13 C chronologies, whereas the low-frequency (decadal-scale) signal was more similar among the d 18O chronologies. For both carbon and oxygen isotopes, we found significant positive relationships with annual and growing season temperatures and negative relationships with precipitation, again of similar magnitude for all species except for Fraxinus, which contained only minor climatic information. Averaging of all chronologies resulted in an increase in the climatic signal of the mean chronology. The combined d18 O record reflected decadal-scale temperature variations remarkably well (r = 0.72). However, the relationship between climate and carbon isotopes declined over the last 3 decades of the 20th century, probably related to the steep increase in atmospheric CO 2 concentrations, resulting in strongly diverging d 13 C trends of the different chronologies. Our study indicates that combining chronologies from different species enhances the potential of isotope studies for extending climate reconstructions into areas of temperate climate.
[1] Climate reconstructions based on stable isotopes in tree rings commonly rely on the assumption that climate-isotope relations are stable over time. However, studies of tree ring growth have revealed trends thought to result from either physiological changes or changes in the climate-growth relationship. We investigated whether or not similar trends exist for tree ring stable isotopic ratios using a statistical approach. Correlations between climate (temperature and precipitation amount) and tree ring cellulose d 13 C and d 18 O of oak and pine from Ticino, Switzerland, were calculated for the period AD 1660-2000. Climate calibration of tree rings was enabled by long-term monthly resolved temperature and precipitation data sets on the basis of instrumental and documentary proxy data. Overall, five findings have been identified: (1) Isotopic ratios in tree rings most strongly reflect conditions of the current growing season, (2) temporally stable climate signals are found in pine d 13 C only, (3) all other correlations between tree ring isotopes and climate are temporally unstable and characterized by shifts in correlation sign and strength, (4) climate signals in oak are strongest in the 20th century, and (5) tree ring d 13 C reflects local climatic conditions while d 18 O is influenced by large-scale synoptic circulation. The nonstationary relationships observed could reflect changes in the relationship between the climate variables or a physiological adaptation to warmer conditions. Our results provide a cautionary note for the calibration of long tree ring series with 20th century relationships, at least for trees located at ecologically nonextreme sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.