Contouring has become an increasingly important aspect of radiotherapy due to inverse planning. Several studies have suggested that the clinical implementation of automated contouring tools can reduce inter‐observer variation while increasing contouring efficiency, thereby improving the quality of radiotherapy treatment and reducing the time between simulation and treatment. In this study, a novel, commercial automated contouring tool based on machine learning, the AI‐Rad Companion Organs RT™ (AI‐Rad) software (Version VA31) (Siemens Healthineers, Munich, Germany), was assessed against both manually delineated contours and another commercially available automated contouring software, Varian Smart Segmentation™ (SS) (Version 16.0) (Varian, Palo Alto, CA, United States). The quality of contours generated by AI‐Rad in Head and Neck (H&N), Thorax, Breast, Male Pelvis (Pelvis_M), and Female Pelvis (Pevis_F) anatomical areas was evaluated both quantitatively and qualitatively using several metrics. A timing analysis was subsequently performed to explore potential time savings achieved by AI‐Rad. Results showed that most automated contours generated by AI‐Rad were not only clinically acceptable and required minimal editing, but also superior in quality to contours generated by SS in multiple structures. In addition, timing analysis favored AI‐Rad over manual contouring, indicating the largest time saving (753s per patient) in the Thorax area. AI‐Rad was concluded to be a promising automated contouring solution that generated clinically acceptable contours and achieved time savings, thereby greatly benefiting the radiotherapy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.