Turbulence in hot magnetized plasmas is shown to generate permeable localized transport barriers that globally organize into the so-called "ExB staircase" [G. Dif-Pradalier et al., Phys. Rev. E, 82, 025401(R) (2010)]. Its domain of existence and dependence with key plasma parameters is discussed theoretically. Based on these predictions, staircases are observed experimentally in the Tore Supra tokamak by means of high-resolution fast-sweeping X-mode reflectometry. This observation strongly emphasizes the critical role of mesoscale self-organization in plasma turbulence and may have far-reaching consequences for turbulent transport models and their validation. A puzzling result in recent years in plasma turbulence has arguably been the discovery of the quasiregular pattern of E × B flows and interacting avalanches that we have come to call the "E × B staircase," or the "plasma staircase" in short [1]. This structure may be defined as a spontaneously formed, self-organizing pattern of quasiregular, long-lived, localized shear flow and stress layers coinciding with similarly long-lived pressure corrugations and interspersed between regions of turbulent avalanching. The plasma staircase exemplifies how a systematic organization of turbulent fluctuations may lead to the onset of strongly correlated flows on magnetic flux surfaces.Flow patterning is a prominent topic in many fluidrelated systems and hot magnetized plasmas are no exception to that. In fact the "staircase" name is borrowed from the vast literature in planetary flows motivated by the desire to explain the banded structure of observed atmospheres in our Solar System-including Earth [2] or Jupiter [3]-and of terrestrial oceans [4]. Just as in the geophysical or astrophysical systems where the planetary staircase strongly influences the general circulation, the plasma staircase plays an important role in organizing the heat transport [1]: avalanches and the staircase interplay, statistically interrupting at mesoscales the long-range radial avalanching that could otherwise expand over the whole system. The nonlocal heat transport thus remains contained at the mesoscale staircase step spacing, resulting in a beneficial scaling of confinement with machine size. This flow patterning is primarily a spontaneous mean zonal shear patterning. "Zonal" denotes the axisymmetric n ¼ m ¼ 0 component of the E × B flows [5], n and m respectively being the toroidal and poloidal mode numbers while "mean" refers to the ensemble-averaged part of the zonal flows. Remarkably, the plasma spontaneously generates robust shear patterns that endure despite the strong background turbulence and retain their coherence over long (several milliseconds) to very long (hundreds of milliseconds) periods of time. The results presented throughout this Letter are based on state-of-the-art flux-driven gyrokinetic [6] computations using the GYSELA code [7] with realistic tokamak plasma parameters. Systematic features of the plasma staircase can be inferred from extensive computational scans, see ...
This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic Gysela code is one of the few international 5D gyrokinetic codes able to perform global, full-f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the Gysela code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.
The linear properties of the geodesic acoustic modes (GAM) in tokamaks are investigated by means of the comparison of analytical theory and gyrokinetic numerical simulations. The dependence on the value of the safety factor, finite-orbit-width of the ions in relation to the radial mode width, magnetic-flux-surface shaping, and electron/ion mass ratio are considered. Nonuniformities in the plasma profiles (such as density, temperature, or safety factor), electro-magnetic effects, collisions and presence of minority species are neglected. Also, only linear simulations are considered, focusing on the local dynamics. We use three different gyrokinetic codes: the lagrangian (particle-in-cell) code ORB5, the eulerian code GENE and semi-lagrangian code GYSELA. One of the main aims of this paper is to provide a detailed comparison of the numerical results and analytical theory, in the regimes where this is possible. This helps understanding better the behavior of the linear GAM dynamics in these different regimes, the behavior of the codes, which is crucial in the view of a future work where more physics is present, and the regimes of validity of each specific analytical dispersion relation. 1 theories derived so far treat the m = 0 component of the electrons as adiabatic (whereas the m=0 component of the electron density perturbation is imposed to zero). We will refer to this model for treating the electrons as "adiabatic". The importance of having an analytical description is twofold. On the one hand, it allows a direct understanding of the physical mechanisms leading to the each different effect under investigation. On the other hand, it allows a detailed linear verification process of the numerical tools, which is at the basis of the development of gyrokinetic codes aimed at a rigorous turbulence investigation.Many numerical investigations of the linear GAM dynamics and comparison with analytical theory or benchmark among codes have been carried out in the last few decades, most of which treating the electrons as adiabatic. As a non-extensive list of example, we mention here simulations performed with the gyrokinetic codes GTC [20,21], ORB5 [22] (where the effect of the elongation was studied), TEMPEST [16] (where the effect of high-order terms of the finite ion orbit width was studied), GYRO [23] (where the effect of finite orbit width and the application to the radial velocity in the large-q limit was studied), GYSELA [24], ELMFIRE [25], and GENE with GKW [26]. In particular, a first verification of ORB5 against analytical theories, for circular geometries and low values of k r ρ i , was started in Ref. [27]. A numerical study of the effect of kinetic electrons in circular plasmas has been described in Ref. [28].In this paper, we aim at performing a comprehensive cross-code verification and benchmark of several gyrokinetic codes, in different regimes. We perform numerical simulations with three different gyrokinetic codes, adopting equivalent physical models for the dynamics of the ions (which is the most basic ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.