This paper presents a discrete-time modeling of dynamic milling systems. End mills with arbitrary geometry are divided into differential elements along the cutter axis. Variable pitch and helix angles, as well as run-outs can be assigned to cutting edges. The structural dynamics of the slender end mills and thin-walled parts are also considered at each differential element at the tool-part contact zone. The cutting forces include static chip removal, ploughing, regenerative vibrations, and process damping components. The dynamic milling system is modeled by a matrix of delay differential equations with periodic coefficients, and solved with an improved semidiscrete-time domain method in modal space. The chatter stability of the system is predicted by checking the eigenvalues of the time-dependent transition matrix which covers the tooth period for regular or spindle periods for variable pitch cutters, respectively. The same equation is also used to predict the process states such as cutting forces, vibrations, and dimensional surface errors at discrete-time domain intervals analytically. The proposed model is experimentally validated in down milling of a workpiece with 5% radial immersion and 30 mm axial depth of cut with a four fluted helical end mill.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.