An expression for the curvature of the 'covariant' determinant line bundle is given in even dimensional space-time. The usefulness is guaranteed by its prediction of the covariant anomaly and Schwinger term. It allows a parallel derivation of the consistent anomaly and Schwinger term, and their covariant counterparts, which clarifies the similarities and differences between them. In particular, it becomes clear that in contrary to the case for anomalies, the difference between the consistent and covariant Schwinger term can not be extended to a local form on the space of gauge potentials.
In ref.[1], Schwinger terms in hamiltonian quantization of chiral fermions coupled to vector potentials were computed, using some ideas from the theory of gerbes, with the help of the family index theorem for a manifold with boundary. Here, we generalize this method to include gravitational Schwinger terms.
There exist two versions of the covariant Schwinger term in the literature.
They only differ by a sign. However, we shall show that this is an essential
difference. We shall carefully (taking all signs into account) review the
existing quantum field theoretical computations for the covariant Schwinger
term in order to determine the correct expression.Comment: 26 pages, Latex, some references adde
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.