We report observation of Wannier-Stark ladders with ultracold sodium atoms in an accelerating one-dimensional standing wave of light. Atoms are trapped in a far-detuned standing wave that is accelerated for a controlled duration. A small oscillatory component is added to the acceleration, and the fraction of trapped atoms is measured as a function of the oscillation frequency. Resonances are observed where the number of trapped atoms drops dramatically. The separation between resonant peaks is found to be proportional to the acceleration. We show that this resonant structure can also be understood as a temporal quantum interference effect. [S0031-9007(96)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.