Background:The impact of combining plasma fibrinogen levels with Epstein–Barr Virus DNA (EBV DNA) levels on the prognosis for patients with nasopharyngeal carcinoma (NPC) was evaluated.Methods:In this observational study, 2563 patients with non-metastatic NPC were evaluated for the effects of circulating plasma fibrinogen and EBV DNA levels on disease-free survival (DFS), distant metastasis-free survival (DMFS), and overall survival (OS).Results:Compared with the bottom biomarker tertiles, TNM stage-adjusted hazard ratios (HR, 95% confidence intervals (CIs)) for predicting DFS in fibrinogen tertiles 2 to 3 were 1.26 (1.00 to 1.60) and 1.81 (1.45 to 2.26), respectively; HR for EBV DNA tertiles 2 to 3 were 1.49 (1.12 to 1.98) and 4.24 (3.27 to 5.49), respectively. After additional adjustment for established risk factors, both biomarkers were still associated (P for trend <0.001) with reduced DFS (HR: 1.79, 95% CI, 1.43 to 2.25 for top fibrinogen tertiles; HR: 4.04, 95% CI: 3.10 to 5.27 for top EBV DNA tertiles compared with the bottom tertiles). For patients with advanced-stage disease, those with high fibrinogen levels (⩾3.34 g l−1) presented with worse DFS, regardless of EBV DNA ⩾4000 or <4000 copies ml−1 subgroup. Similar findings were observed for DMFS and OS.Conclusions:Circulating fibrinogen and EBV DNA significantly correlate with NPC patients survival. Combined fibrinogen and EBV DNA data lead to improved prognostic prediction in advanced-stage disease.
Immune checkpoints modulate the immune response and represent important immunotherapy targets for cancer treatment. However, as many tumors are resistant to current immune checkpoint inhibitors, the discovery of novel immune checkpoints could facilitate the development of additional immunotherapeutic strategies to improve patient responses. Here, we identified increased expression of the adhesion molecule immunoglobulin superfamily member 9 (IGSF9) in tumor cells and tumor-infiltrating immune cells across multiple cancer types. IGSF9 overexpression or knockout in tumor cells did not alter cell proliferation in vitro or tumor growth in immunocompromised mice. Alternatively, IGSF9 deficient tumor cells lost the ability to suppress T cell proliferation and exhibited reduced growth in immunocompetent mice. Similarly, growth of tumor cells was reduced in IGSF9 knockout syngeneic and humanized mice, accompanied by increased tumor-infiltrating T cells. Mechanistically, the extracellular domain (ECD) of IGSF9 bound to T cells and inhibited their proliferation and activation, and the tumor promoting effect of IGSF9 ECD was reversed by CD3+ T cell depletion. Anti-IGSF9 antibody treatment inhibited tumor growth and enhanced the anti-tumor efficacy of anti-PD-1 immunotherapy. Single-cell RNA sequencing revealed tumor microenvironment remodeling from tumor-promoting to tumor-suppressive following anti-IGSF9 treatment. Together, these results indicate that IGSF9 promotes tumor immune evasion and is a candidate immune checkpoint target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.