Continuumrobotic manipulators articulate due to their inherent compliance. Tendon actuation leads to compression of the manipulator, extension of the actuators, and is limited by the practical constraint that tendons cannot support compression. In light of these observations, we present a new linear model for transforming desired beam configuration to tendon displacements and vice versa. We begin from first principles in solid mechanics by analyzing the effects of geometrically nonlinear tendon loads. These loads act both distally at the termination point and proximally along the conduit contact interface. The resulting model simplifies to a linear system including only the bending and axial modes of the manipulator as well as the actuator compliance. The model is then manipulated to form a concise mapping from beam configurationspace parameters to n redundant tendon displacements via the internal loads and strains experienced by the system. We demonstrate the utility of this model by implementing an optimal feasible controller. The controller regulates axial strain to a constant value while guaranteeing positive tendon forces and minimizing their magnitudes over a range of articulations. The mechanics-based model from this study provides insight as well as performance gains for this increasingly ubiquitous class of manipulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.