En este trabajo se estudia la estabilidad de un péndulo invertido de dos grados de libertad y de base móvil, el cual se modeló mediante la formulación Euler-Lagrange. Este modelo permitió diseñar e implementar una estrategia de control para el seguimiento de trayectorias articulares de referencia. Los sistemas mecánicos de bases fijas y móviles permiten ilustrar un concepto fundamental en las ciencias físicas, que es la diferencia entre limitaciones tecnológicas y limitaciones fundamentales.Descriptores: Enseñanza; ecuación de Lagrange; sistemas mecánicos; simulación.In this paper, we study the stability of an inverted pendulum with two degrees of freedom and a mobile base, which was modeled using the Euler-Lagrange formulation. This model is used to design and implement a control strategy for tracking joint reference trajectories. The mechanical systems of fixed and mobile base illustrate a fundamental concept in the physical sciences, which is the difference between technological and fundamental limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.