SummaryBackgroundOne of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes.MethodsWe pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.FindingsWe used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target.InterpretationSince 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries.FundingWellcome Trust.
While several studies have described the rate and pattern of involutional bone loss in women, far less information is available for men. Furthermore, the roles of lifestyle and body build in determining bone loss rate in both sexes have been largely extrapolated from cross-sectional studies. We addressed this issue in a population-based longitudinal study which sought to ascertain rates of bone loss at the femoral neck and lumbar spine in a cohort of men and women aged 60-75 years at baseline, and to relate this loss to anthropometric and lifestyle variables. We additionally investigated the capacity of biochemical markers of bone turnover to predict bone loss rates in these subjects. Women lost bone at all sites; this ranged from 0.20%/year at the lumbar spine to 1.43%/year at the femoral trochanteric region. By contrast, men lost only 0. 20%/year at the trochanteric region, and gained at the lumbar spine (0.33%/year) and at Ward's triangle (0.27%/year) over the 4-year period. Anthropometric measurements were associated with bone loss in both sexes; lower baseline body mass index (BMI) and a greater rate of loss of adiposity over the follow-up period were both associated with greater bone loss at all proximal femoral sites. These attained statistical significance after Bonferroni correction at the total proximal femur among both men (r = 0.29), p<0.01) and women (r = 0.31, p<0.05). Lifestyle factors associated with lower rates of bone loss (after adjustment for BMI) included alcohol consumption at the femoral neck among women (p = 0.007) and physical activity at the lumbar spine among men (p = 0.05). Serum parathyroid hormone, 25-hydroxyvitamin D and biochemical markers of bone turnover did not predict bone loss after adjustment for adiposity.
Objectives: To examine the relation between fetal growth and cognitive function in adult life. Design: A follow up study of men and women whose birth weights and other measurements of body size had been recorded at birth. Setting: Hertfordshire, Preston, and Sheffield. Subjects: 1576 men and women born in Hertfordshire, Sheffield, or Preston between 1920 and 1943. Main outcome measures: Intelligence quotient as measured by the AH4 test and amount of decline in cognitive function with age as estimated by the difference between score on the Mill Hill vocabulary test and score on the AH4 test. Results: Score on the intelligence test was higher in people who had a large biparietal head diameter at birth, but it was not related to any other measure of body size or proportions. No association was found between decline in cognitive function and any measure of size or proportions at birth. Conclusion: Impaired fetal growth was not associated with poorer cognitive performance in adult life. Adaptations made by the fetus in response to conditions that retard its growth seem to be largely successful in maintaining brain development. Key messages In humans, low birth weight and proportionate smallness at birth have been associated with poorer cognitive function in early childhood, but there have been few studies on whether this association persists into adult life There was no relation between body size or pro- portions at birth and either intelligence or cognitive decline related to age in over 1500 people aged between 48 and 74 years whose birth measurements had been recorded Fetal growth seems to be less important than genetic factors and environmental influences in postnatal life in determining adult cognitive performance Adaptations made by the fetus in response to conditions that retard its growth may be largely successful in maintaining brain development
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.