Multilayer epitaxial graphene is investigated using far infrared transmission experiments in the different limits of low magnetic fields and high temperatures. The cyclotron-resonance-like absorption is observed at low temperature in magnetic fields below 50 mT, probing the nearest vicinity of the Dirac point. The carrier mobility is found to exceed 250,000 cm2/(V x s). In the limit of high temperatures, the well-defined Landau level quantization is observed up to room temperature at magnetic fields below 1 T, a phenomenon unusual in solid state systems. A negligible increase in the width of the cyclotron resonance lines with increasing temperature indicates that no important scattering mechanism is thermally activated.
We present optical spectroscopy (photoluminescence and reflectance) studies of thin layers of the transition metal dichalcogenide WSe2, with thickness ranging from mono- to tetra-layer and in the bulk limit. The investigated spectra show the evolution of excitonic resonances as a function of layer thickness, due to changes in the band structure and, importantly, due to modifications of the strength of Coulomb interactions as well. The observed temperature-activated energy shift and broadening of the fundamental direct exciton are well accounted for by standard formalisms used for conventional semiconductors. A large increase of the photoluminescence yield with temperature is observed in a WSe2 monolayer, indicating the existence of competing radiative channels. The observation of absorption-type resonances due to both neutral and charged excitons in the WSe2 monolayer is reported and the effect of the transfer of oscillator strength from charged to neutral excitons upon an increase of temperature is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.