Purpose
Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size scintillating detector targeting small field dosimetry and compare its performance with other commercial detectors.
Method
An inorganic scintillator detector (ISD) of about 200 µm outer diameter was developed and tested through different small field dosimetric characterizations under high‐energy photons (6 and 15 MV) delivered by an Elekta Linear Accelerator (LINAC). Percentage depth dose (PDD) and beam profile measurements were compared using dosimeters from PTW namely, microdiamond and PinPoint three‐dimensional (PP3D) detector. A background fiber method has been considered to quantitate and eliminate the minimal Cerenkov effect from the total optical signal magnitude. Measurements were performed inside a water phantom under IAEA Technical Reports Series recommendations (IAEA TRS 381 and TRS 483).
Results
Small fields ranging from 3 × 3 cm2, down to 0.5 × 0.5 cm2 were sequentially measured using the ISD and commercial dosimeters, and a good agreement was obtained among all measurements. The result also shows that, scintillating detector has good repeatability and reproducibility of the output signal with maximum deviation of 0.26% and 0.5% respectively. The Full Width Half Maximum (FWHM) was measured 0.55 cm for the smallest available square size field of 0.5 × 0.5 cm2, where the discrepancy of 0.05 cm is due to the scattering effects inside the water and convolution effect between field and detector geometries. Percentage depth dose factor dependence variation with water depth exhibits nearly the same behavior for all tested detectors. The ISD allows to perform dose measurements at a very high accuracy from low (50 cGy/min) to high dose rates (800 cGy/min) and was found to be independent of dose rate variation. The detection system also showed an excellent linearity with dose; hence, calibration was easily achieved.
Conclusions
The developed detector can be used to accurately measure the delivered dose at small fields during the treatment of small volume tumors. The author's measurement shows that despite using a nonwater‐equivalent detector, the detector can be a powerful candidate for beam characterization and quality assurance in, for example, radiosurgery, Intensity‐Modulated Radiotherapy (IMRT), and brachytherapy. Our detector can provide real‐time dose measurement and good spatial resolution with immediate readout, simplicity, flexibility, and robustness.
The interactions between different low work function metals aluminium, calcium and sodium, and α,ω-diphenyltetradecaheptaene, a model molecule for certain conjugated polymers, have been investigated using both x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. The spectra are interpreted with the help of the results of quantum chemical calculations performed within the local spin density (LSD) approximation methodology. The metals are found to interact with the conjugated system in very different ways. Aluminium forms a covalent bond, which strongly modifies the π-electronic structure of the conjugated molecule, while both the sodium and the calcium atoms act as doping agents, inducing new states in the otherwise forbidden bandgap. These new gap states can be viewed as a soliton–antisoliton pair for the Na/DP7 and a bipolaronic-like defect for Ca/DP7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.