The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
The ABALONE is a new type of photosensor produced by PhotonLab, Inc. with cost effective mass production, robustness and high performance. This modern technology provides sensitivity to visible and UV light, exceptional radio-purity and excellent detection performance in terms of intrinsic gain, afterpulsing rate, timing resolution and single-photon sensitivity. For these reasons, the ABALONE can have many fields of application, including particle physics experiments, such as DARWIN, and medical imaging. This new hybrid photosensor, that works as light intensifier, is based on the acceleration in vacuum of photoelectrons generated in a traditional photosensor cathode and guided towards a window of scintillating material that can be read from the outside through a silicon photomultiplier. In this work we present the simulation of the ABALONE and the results from operation at room temperature. The goal of the characterization is the evaluation of the gain, the response in time and the single photoelectron spectrum as a function of the electric field and the photoelectron emission angle. Details of future tests will be also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.