Calcium has been demonstrated to play an important role in hepatocyte damage during ischemia/reperfusion phases. Calcium influx was determined in primary cultured rat hepatocytes submitted to a succession of warm hypoxia and reoxygenation phases in the presence of diltiazem, gallopamil and a Na+/H+ antiport inhibitor, HOE-694. Only diltiazem significantly inhibited calcium influx with higher potency after reoxygenation than after hypoxia only, suggesting a complex mechanism of action of diltiazem which could act on different physiological functions involved in Ca2+ invasion of hepatocytes after hypoxic insult.
Post ischaemic cell calcium invasion has been described as one of the main causes of graft failure. Protective effects of calcium antagonists have been investigated but are not convincing and their mechanisms of action remain unclear. In this work we tested the protective effect of a new calcium inhibitor described to block a calcium current insensitive to all known calcium blockers. Specific mapacalcine receptors were first characterized on rat hepatocytes membranes using the 125 I-labeled mapacalcine. 45 Ca fluxes were then measured on cultured hepatocytes submitted (or not) to an hypoxic period. The action of mapacalcine was investigated on the ischaemia-induced calcium influx. We demonstrate here that: (a) there are specific receptors for mapacalcine in rat hepatocytes; (b) Mapacalcine is able to specifically block ischaemia-induced calcium influx with an IC 50 of 0.3 lM and does not significantly interact with the basal calcium flux.Our work demonstrates that the mapacalcine receptor is a cellular structure directly involved in the phenomenon of postischaemic cell invasion by calcium. Specific block of ischaemia-induced Ca 2+ influx by mapacalcine suggests that the development of a panel of pharmacological drugs acting on this receptor could lead to the discovery of therapeutic agents able to protect cells against one of the events responsible for organ failure after transplantation or simply after an ischaemic period. Moreover, identification of the cellular protein which binds mapacalcine may become an important step in the research of mechanisms involved in postischaemic cell invasion by calcium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.