Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied alloys. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.
Patterns on sand generated by blowing winds are one of the most commonly seen phenomena driven by such a self-organization process, as has been observed at the nanoscale after ion irradiation. The origins of this effect have been under debate for decades. Now, a new methodology allows to simulate directly the ripple formation by high-fluence ion-irradiation. Since this approach does not pre-assume a mechanism to trigger self-organization, it can provide answers to the origin of the ripple formation mechanism. The surface atom displacement and a pile-up effect are the driving force of ripple formation, analogously to the macroscopic one. IMPACT STATEMENTThe presented model allows to follow the ripple formation and propagation in different steps, at the atomic level, for the first time under low irradiation energies. ARTICLE HISTORY
Recently the possibility to use ion beam mixing combined with suitable annealing has been suggested as a possible means to synthesize individual silicon quantum dots in a silica layer, with the possibility to function as single-electron transistors. For this to work, it is necessary to have a careful control of the ion beam mixing in Si/SiO 2 /Si heterostructures, as well as understand the nature of not only the composition, but also the chemical modication of the SiO 2 layer by the mixing with Si. We describe here a procedure to synthesize Si/SiO 2 /Si heterostructures in molecular dynamics, with an energy minimization scheme to create strong and stable interfaces. The created heterostructures are irradiated at energies and uences matching corresponding experiments. The results show a considerable degree of interface mixing, as expected. They also show some densication of the silica layer due to recoil implantation, and formation of a considerable number of coordination defects. Due to the strong covalent bonding in silicon and silica, the densication is not fully elastically relaxed even in the presence of a nearby surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.