SUMMARY1. The distribution of velocity (velocity profile) was studied in water flowing through simple models of the circulation. Dye was injected and the distribution of velocity was assessed from indicator concentration-time curves recorded with a photomultiplier.2. Observations were made on straight and curved tubes and on a tube containing a short region with an elliptical cross-section. With steady flow, the rate was varied over the range 24-870 ml./min (Reynolds number 102-3690). Sinusoidal pulsations were imposed on the steady flow in some experiments.3. Bends gave rise to large secondary flows.These caused mixing across the flow and a marked reduction in the variation of velocity over the crosssection of the tube. The effect of bends on velocity distribution was maximal at a Reynolds number of ca. 1000. Similar, but far smaller, effects were seen in a region with an elliptical cross-section and when the flow was made pulsatile. Secondary motion due to bends was capable of preventing a heavier-than-water indicator (sp.gr. 1x375) from settling out of the flow.4. The experimental findings suggest that there may be secondary flows in vascular beds. Under certain conditions, these would prevent the establishment of Poiseuille type laminar flow. The possible physiological importance of the findings is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.