Abstract-Keep things simple when controlling bidirectional pulsewidth modulation rectifiers by considering the utility grid as a virtual electric machine. The advantage is that the air-gap flux of this big machine can be directly measured in a straightforward way. Therefore, as shown in this paper, principles of field orientation can be applied to control the power flow, yielding high-dynamic performance.
In existing half/full-bridge high-precision amplifiers, output distortion is present due to the required switch blanking time. The OCC topology does not require this blanking time but has a much higher total inductor volume compared to the half bridge. In this paper, a patented new topology is introduced that has the advantages of the OCC but with a much lower total inductor volume. The basic operation and properties of the ELOCC topology are explained including an extended optimization of the total inductor volume and an average model for control design. A prototype ELOCC current amplifier has been developed. The behavior of this prototype is in good agreement with the obtained simulation results. Even though the prototype is not fully optimized, the linearity compared to a full bridge is already impressive.Index Terms-DBI, dual-buck inverter, ELOCC, high precision, OCC, opposed current converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.