Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges.
The objective of the current study was to examine the effects of supplemental melatonin implants on uterine artery blood flow from mid to late gestation in beef cattle and subsequent development of their male offspring. Commercial beef heifers (n = 32) and cows (n = 25) were bred via artificial insemination and assigned to 1 of 2 groups supplemented with melatonin implants (MEL) or without (CON) at day 180, 210, and 240 of gestation. Uterine artery blood flow was determined using color Doppler ultrasonography. A subset of 12 crossbred heifers (n = 6 MEL; n = 6 CON) underwent Cesarean sections on day 243 ± 2 of gestation to allow for placentome collection. Maternal and fetal serum were collected to analyze melatonin concentrations. The remaining cattle were allowed to calve and at weaning (195 ± 2 d of age), bull calves (n = 15) were castrated and testicular tissue harvested for seminiferous tubule analysis. Heifer uterine artery blood flow was increased (P = 0.009) at day 240 of gestation in MEL compared with CON heifers. Cow uterine artery blood flow was increased (P = 0.003) in MEL compared with CON cows irrespective of gestational day. Maternal and fetal concentrations of melatonin were increased (P < 0.05) in MEL compared with CON heifers. The percent of placentome capillary area per mm2 was decreased (P = 0.019) in MEL compared with CON heifers, while cotyledonary ANGPT1 mRNA tended to increase (P = 0.095) in MEL compared with CON heifers. At weaning, body weight of male offspring and their scrotal circumference were increased (P < 0.05) in calves born to MEL compared with CON dams, while seminiferous tubule diameter and area were not different (P > 0.40) between treatments. In summary, melatonin supplementation increased uterine artery blood flow in mid to late gestating cattle, but this was not accompanied by an increase in fetal weight. Alterations in postnatal development of bulls, including increased body weight and scrotal circumference, warrants future investigations related to attainment of puberty and subsequent fertility of offspring born to melatonin supplemented dams.
Contents
Production from the corpus luteum (CL) and/or hepatic steroid inactivation impacts peripheral concentrations of P4, which can alter reproductive performance. Our primary objective was to examine hepatic steroid inactivating enzymes, portal blood flow, and luteal blood perfusion at 10 days post‐insemination in pregnant versus non‐pregnant beef and dairy cows. Twenty early lactation Holstein cows and 20 lactating commercial beef cows were utilized for this study. At day 10 post‐insemination, hepatic portal blood flow and CL blood perfusion were measured via Doppler ultrasonography. Liver biopsies were collected and frozen for later determination of cytochrome P450 1A (CYP1A), 2C (CYP2C), 3A (CYP3A), uridine diphosphate‐glucuronosyltransferase (UGT) and aldo‐keto reductase 1C (AKR1C) activities. Pregnancy was determined at day 30 post‐insemination and treatment groups were retrospectively assigned as pregnant or non‐pregnant. Data were analyzed using the mixed procedure of SAS. Steroid metabolizing enzyme activity was not different (p > .10) between pregnant versus non‐pregnant beef or dairy cows. Hepatic portal blood flow tended (p < .10) to be increased in pregnant versus non‐pregnant dairy cows. Luteal blood perfusion was increased (p < .05) in pregnant versus non‐pregnant dairy cows. Pregnant dairy cows appear to have an increased rate of hepatic clearance of P4 in combination with increased synthesis from the CL. This could account for the lack of difference in peripheral P4 concentrations between pregnant and non‐pregnant dairy cows. This study highlights the relevance of further investigation into steroid secretion and inactivation and their impact on the maintenance of pregnancy in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.