Estimating evapotranspiration's spatiotemporal variance is critical for regional water resource management and allocation, including irrigation scheduling, drought monitoring, and forecasting. The Surface Energy Balance Algorithm for Land (SEBAL) method can be used to estimate spatio-temporal variations in evapotranspiration (ET) using remote sensing-based variables like Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), surface albedo, transmittance, and surface emissivity. The main aim of the study was to evaluate the actual evapotranspiration for the lower Bhavani basin, Tamil Nadu based on remote sensing methods using Landsat 8 data for the years 2018 to 2020. The actual evapotranspiration was estimated using SEBAL model and its spatial variation was compared over different land covers. The estimated values of daily actual evapotranspiration in the lower Bhavani basin ranged from 0 to 4.72 mm day-1. Thus it is evident that SEBAL model can be used to predict ET with limited ground base hydrological data. The spatially estimated ET values will help in managing the crop water requirement at each stage of crop and irrigation scheduling, which will ensure the efficient use of available water resources.
Land use land cover (LULC) change detection is essential for sustainable development, planning and management. This study was an attempt to evaluate the LULC change in the lower bhavani basin from 2014 to 2019, using Landsat 8 data integrating Google Earth Engine (GEE) as a web-based platform and Geographic Information System. The CART and Random Forest classifiers in GEE were used for performing supervised classification. The classified map accuracy was assessed using high resolution imagery and evaluated using a confusion matrix implemented in GEE. Five major LULC classes, viz., agriculture, built up, current fallow, forest and waterbody, were identified, and the dominant land use in the study area was agriculture and current fallow, followed by dominant land use of forest. During the study period (2014–2019) the change inbuilt-up area 7.37% in 2019 and 5.45% in 2014, was noted due to urban sprawl. GEE showed significant versatility and proved to be an effective platform for LULC detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.