Here we report the surprising discovery that high-energy vinyl carbocations can be generated under strongly basic conditions, and that they engage in intramolecular sp3 C–H insertion reactions through the catalysis of weakly coordinating anion salts. This approach relies on the unconventional combination of lithium hexamethyldisilazide base and the commercially available catalyst, triphenylmethylium tetrakis(pentafluorophenyl)-borate. These reagents form a catalytically active lithium species that enables the application of vinyl cation C–H insertion reactions to heteroatom-containing substrates.
A mild method for the synthesis of 2-quinolinones via hydroarylation of N-aryl alkynamides is reported. While traditional methods have relied on the use of strong Brønsted or Lewis acids, this report describes the development of mild reaction conditions that yield 2-quinolinones in good to excellent yield using a commercially available gold catalyst. Substrates bearing a variety of functional groups are presented, with N-substitution proving to be key to the reactivity of several substrates.
From the preparation of pharmaceuticals to enzymatic construction of natural products, carbocations are central to molecular synthesis. Although these reactive intermediates are engaged in stereoselective processes in nature, exerting enantiocontrol over carbocations with synthetic catalysts remains challenging. Many resonance-stabilized tricoordinated carbocations, such as iminium and oxocarbenium ions, have been applied in catalytic enantioselective reactions. However, their dicoordinated counterparts (aryl and vinyl carbocations) have not, despite their emerging utility in chemical synthesis. We report the discovery of a highly enantioselective vinyl carbocation carbon–hydrogen (C–H) insertion reaction enabled by imidodiphosphorimidate organocatalysts. Active site confinement featured in this catalyst class not only enables effective enantiocontrol but also expands the scope of vinyl cation C–H insertion chemistry, which broadens the utility of this transition metal–free C(sp
3
)–H functionalization platform.
A catalytic redox-neutral method for the synthesis of spirolactams proceeding through the dearomative spirocyclization of N-aryl alkynamides is reported. In contrast to stoichiometric activating agents employed for related transformations, we show that the use of 5 mol % of Au(PPh)Cl and AgOTf in dichloroethane at 50-80 °C leads to selective spirocyclization, furnishing the products in yields of 35-87%. The substrate scope of the reaction is good, with both electron-donating and electron-withdrawing groups being tolerated around the arene ring, as well as substitution at the amide nitrogen. The identity of the para-alkoxy group on the arene ring is key to achieving selectivity for spirocyclization over alternative mechanistic pathways. While the presence of a para-methoxy group leads to trace amounts of the desired spirolactams, the para-tert-butoxy or para-hydroxy substrate analogues furnish the spirolactams in good yield with high selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.