Geothermal heat flow (GHF) data measured directly from boreholes are sparse. Purely physics-based models for geothermal heat flow prediction require various simplifications and are feasible only for few geophysical observables. Thus, data-driven multi-observable approaches need to be explored for continental-scale models. In this study, we generate a geothermal heat flow model over Africa using random forest regression, originally based on sixteen different geophysical and geological quantities. Due to an intrinsic importance ranking of the observables, the number of observables used for the final GHF model has been reduced to eleven (among them are Moho depth, Curie temperature depth, gravity anomalies, topography, and seismic wave velocities). The training of the random forest is based on direct heat flow measurements collected in the compilation of (Lucazeau et al., Geochem. Geophys. Geosyst. 2019, 20, 4001–4024). The final model reveals structures that are consistent with existing regional geothermal heat flow information. It is interpreted with respect to the tectonic setup of Africa, and the influence of the selection of training data and observables is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.