HIV viremia is associated with a wide range of immune dysfunctions that contribute to the immunocompromised state. HIV viremia has been shown to have a broad effect on several immune cell types and=or their interactions that are vital for mounting an effective immune response. In this study, we investigated the integrity of plasmacytoid dendritic cell (pDC)-NK cell interactions among HIV viremic, aviremic, and seronegative individuals. We describe a critical defect in the ability of pDCs from HIV-infected individuals to secrete IFN-a and TNF and subsequently activate NK cells. We also describe an inherent defect on NK cells from HIV-infected individuals to respond to pDC-secreted cytokines. Furthermore, we were able to demonstrate a direct effect of HIV trimeric gp120 on NK cells in vitro similar to that described ex vivo. Finally, we were able to establish that the HIV gp120-mediated suppressive effect on NK cells was a result of its binding to the integrin a 4 b 7 expressed on NK cells. These findings suggest a novel mechanism by which HIV is capable of suppressing an innate immune function in infected individuals.
Both mapatumumab and lexatumumab are excellent candidates for therapy of HCC. HCV infection of Huh7.5 cells selectively up-regulates TRAIL-R1 receptor, associated with increased susceptibility to mapatumumab-mediated TRMA. HCV infection up-regulated IAP genes, offering promise for future combination therapy using TRAIL agonists and IAP inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.