The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.
Reference dosimetry in the presence of a strong magnetic field is challenging. Ionisation chambers have shown to be strongly affected by magnetic fields. There is a need for robust and stable detectors in MRI-guided radiotherapy (MRIgRT). This study investigates the behaviour of the alanine dosimeter in magnetic fields and assesses its suitability to act as a reference detector in MRIgRT.
Alanine pellets were loaded in a waterproof holder, placed in an electromagnet and irradiated by 60Co and 6 MV and 8 MV linac beams over a range of magnetic flux densities. Monte Carlo simulations were performed to calculate the absorbed dose, to water and to alanine, with and without magnetic fields. Combining measurements with simulations, the effect of magnetic fields on alanine response was quantified and a correction factor for the presence of magnetic fields on alanine was determined.
This study finds that the response of alanine to ionising radiation is modified when the irradiation is in the presence of a magnetic field. The effect is energy independent and may increase the alanine/electron paramagnetic resonance (EPR) signal by 0.2% at 0.35 T and 0.7% at 1.5 T. In alanine dosimetry for MRIgRT, this effect, if left uncorrected, would lead to an overestimate of dose. Accordingly, a correction factor,
k
Q
B
,
Q
, is defined. Values are obtained for this correction as a function of magnetic flux density, with a standard uncertainty which depends on the magnetic field and is 0.6% or less.
The strong magnetic field has a measurable effect on alanine dosimetry. For alanine which is used to measure absorbed dose to water in a strong magnetic field, but which has been calibrated in the absence of a magnetic field, a small correction to the reported dose is required. With the inclusion of this correction, alanine/EPR is a suitable reference dosimeter for measurements in MRIgRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.