The completely hepatectomized rat has frequently been used as a model to study changes in the economy of norepinephrine (NE) and dopamine (DA) in hepatic coma. Hypothermia characteristically develops in hepatectomized rats and also occurs in patients in hepatic coma and is associated with improved survival in both. The aims of the present study were to measure both release and uptake of NE and release of DA in brain in warm (37°C) and cool (30–32°C) rats at 3–5 h after laparotomy or hepatectomy. Ventriculocisternal perfusions of the brain were performed on rats under basal conditions and during releases evoked by 40 mM K+. Basal releases of NE and DA and evoked release of DA were greater in the warm hepatectomized rats than in all other groups. In some studies, 10−5M amitriptyline was added to the perfusates to assess whether neuronal uptake was changed after hepatectomy. Uptake of released NE was equally robust in cool hepatectomized as in cool laparotomized rats but could not be measured in warm hepatectomized rats because of amitriptyline toxicity in these rats. Decreases in NE and increases in DA content were found in most areas of the brain after perfusion. Increased releases of NE and DA may contribute to the pathogenesis of hepatic encephalopathy.
Catecholamines and their metabolites have been proposed as markers of sympathetic nervous system stimulation. However, the adrenal medulla is a rich source of catecholamines and catecholamine metabolites and may play a significant role in plasma levels of these compounds. In addition to adrenal catecholamine metabolite efflux, the role of the catecholamine precursor 3,4‐dihydroxyphenylalanine (DOPA) has not been fully evaluated. The simultaneous effluxes of catecholamines, metabolites, DOPA, and neuropeptides were measured in perfusates from isolated dog adrenals. The relative abundance of compounds detected consistently during unstimulated conditions was epinephrine ≫ norepinephrine > 3,4‐dihydroxyphenylglycol > metanephrine > normetanephrine > dopamine > 3,4‐dihydroxyphenylacetic acid > 3‐methoxy‐4‐hydroxyphenylglycol ≥ DOPA ≫ [Met]enkephalin ≫ neuropeptide Y. Effluxes of analytes were not affected by cocaine and the ratios of catecholamines to metabolites increased dramatically with carbachol stimulation, consistent with negligible reuptake into adrenal cells. Thus, most of the 3,4‐dihydroxyphenylglycol is expected to be derived from epinephrine and norepinephrine subsequent to translocation from chromaffin vesicles into the cytosol. The efflux of DOPA increased dramatically during stimulation with 30 µM carbachol in a calcium‐dependent manner. Efflux of DOPA during the initial stabilization period of the perfusion preparation declined exponentially, in parallel with the effluxes of the catecholamines and neuropeptides but not with metabolites. Evoked release of DOPA was Ca2+‐dependent. These data suggest that DOPA can be stored and released exocytotically from chromaffin granules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.