We have measured the beam-normal single-spin asymmetry An in the elastic scattering of 1-3 GeV transversely polarized electrons from 1 H and for the first time from 4 He, 12 C, and 208 Pb. For 1 H, 4 He and 12 C, the measurements are in agreement with calculations that relate An to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the 208 Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new An measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.
Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.
A large-area and light-weight Gas Electron Multiplier (GEM) detector was built at the University of Virginia as a prototype for the detector R&D program of the future Electron Ion Collider. The prototype has a trapezoidal geometry designed as a generic sector module in a disk layer configuration of a forward tracker in collider detectors. It is based on light-weight material and narrow support frames in order to minimize multiple scattering and dead-to-sensitive area ratio. The chamber has a novel type of two dimensional (2D) stereo-angle readout board with U-V strips that provides (r,ϕ) position information in the cylindrical coordinate system of a collider environment. The prototype was tested at the Fermilab Test Beam Facility in October 2013 and the analysis of the test beam data demonstrates an excellent response uniformity of the large area chamber with an efficiency higher than 95%. An angular resolution of 60 µrad in the azimuthal direction and a position resolution better than 550 µm in the radial direction were achieved with the U-V strip readout board. The results are discussed in this paper.Gas Electron Multiplier (GEM) detectors [1] are playing an increasing role in the instrumentation of high and medium energy particle physics experiments. A major breakthrough related to the fabrication of GEM foil over recent years, the single mask technique [2], has opened the field for large-area and cost effective tracking detectors using GEM technology with proven performances such as a spatial resolution better than 70 µm, a rate capability higher than 2.5 MHz / cm 2 and high tolerance to radiation in strong background environment etc. A one-meter-long, trapezoidal triple-GEM prototype, the EIC-FT-GEM chamber, was assembled at the University of Virginia (UVa), as part of the tracking and particle identification detector $ This work is supported by Brookhaven National Laboratory through the eRD6 consortium within the EIC R&D program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.