Workers exposure to graphene was measured in a pilot production plant. Reduced graphene oxide was produced through graphite oxidation and posterior thermal reduction. The monitoring was performed using two handheld on-line devices covering the particle size range from 10 nm to 10 μm (CPC3007 and OPS3330). Simultaneously, personal and area filter samples were collected for off line analysis, including gravimetric, elemental carbon analysis and SEM/EDX. Significant releases of particles were identified in two tasks, during the graphene oxide washing, and during its milling. However, the analysis of the particles size distribution and of their morphology suggested that the released particles were not the target nanomaterial but engine generated nanoparticles. The mass of elemental carbon in the collected filters was below the quantification limit and the calculated graphene mass concentrations were quite below the selected reference exposure limit. Overall, this work showed that worker exposure to graphene was low in this pilot plant, contributing to guarantee a safe process, prior to its industrialization.
Aerosol size distributions from ferrous foundry cupola furnaces vary depending on semicontinuous process dynamics, time along the tap-to-tap cycle, dilution ratio, and the physical and chemical nature of the charge and fuel. All of these factors result in a highly time-dependent emission of particulate matter (PM) 2.5 m or less in aerodynamic diameter (PM 2.5 )-even on a mass concentration basis. Control measures are frequently taken on the basis of low-reliability parameters such as emission factors and loosely established mass ratios of PM 2.5 to PM 10 m or less in aerodynamic diameter (PM 10 ). The new environmental requirements could entail unexpected and undesired drawbacks and uncertainties in the meaning and effectiveness of process improvement measures. The development of process-integrated and flue-gas cleaning measures for reduction of particle emissions requires a better knowledge of generation mechanisms during melting. Available aerosol analyzers expand the range of control issues to be tackled and contribute to greatly reduce the uncertainty of engineering decisions on trace pollutant control. This approach combines real-time size distribution monitoring and cascade impactors as preseparators for chemical or morphological analysis. The results allow for establishing a design rationale and performance requirement for control devices. A number size distribution below 10 m in aerodynamic equivalent diameter was chosen as the main indicator of charge influence and filter performance. Size distribution is trimodal, with a coarse mode more than 12 m that contributes up to 30% of the total mass. A temporal series for these data leads to identification of the most relevant size ranges for a specific furnace (e.g., the most penetrating size range). In this cupola, this size range is between 0.32 and 0.77 m of aerodynamic equivalent diameter and defines the pollution control strategy for metals concentrating within this size range. Scrap quality effect is best monitored at less than 0.2 m in aerodynamic equivalent diameter and has been confirmed as strongly dependent on the physical state of the charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.