Five massive gold-cluster molecules have been isolated in high yield and have undergone separate structural characterization, and their electronic structure has been deduced by optical absorption spectroscopy. These new molecules are distinguished by a crystalline (or quasicrystalline) core of densely packed Au atoms, ranging in size from ∼1.1 nm (∼40 atoms) to ∼1.9 nm (∼200 atoms), surrounded by a compact monolayer of various thio (RS) adsorbates. They are obtained as the thermally and environmentally stable products of the reductive decomposition of nonmetallic (−AuS(R)−) polymer in solution, are separated according to size by fractional crystallization or column chromatography, as monitored by high-mass spectrometry, and are characterized structurally by methods including X-ray diffraction (small and large angle), high-resolution electron microscopy, and scanning tunneling microscopy. The optical absorption spectra of dilute solutions of these molecules show size-dependent steplike structure with an onset near the fcc Au interband edge (Δ = 1.7), indicative of transitions to the discrete lowest unoccupied levels of the conduction band. This structure is evident in the smallest clusters even at room temperature, is enhanced at low temperature, and emerges generally as predicted by Kubo's criterion for quantum size effects. It thus requires no assumption of a transition from the bulk metallic bonding character to a nonmetallic (rehybridized or oxidized) state.
The diffusion and coalescence of metal nanoparticles play important roles in many phenomena. Here, we offer a new integrated overview of the main factors that control the nanoparticle coalescence process. Three factors are considered in our description of the coalescence process: nanoparticle diffusion across the surface, their physical and thermodynamic properties, and the mechanism of coalescence. We demonstrate that the liquid-like properties of the surface layers of the nanoparticles play an essential role in this process. We present experimental evidence for our opinion, based on the high-resolution electron microscopic analysis of several different types of nanoparticles.
We report the synthesis of gold nanoparticles directly conjugated to bovine serum albumin protein by chemical reduction in aqueous solution. Transmission electron microscopy reveals that the gold nanoparticles are well dispersed with an average diameter less than 2 nm, and elemental analysis verifies the composition of the gold-protein conjugates. Infrared spectroscopy confirms that the polypeptide backbone is not cleaved during the conjugation process and that the side chain functional groups remain intact. Raman spectroscopy demonstrates that the disulfide bonds in the conjugated protein are broken and thus are available for interaction with the nanoparticle surface. This synthesis method is a new technique for directly attaching gold nanoparticles to macromolecular proteins.
Pt-Au bimetallic nanoparticles have been synthesized by the polyol method and stabilized with poly(vinylpyrrolidone) (PVP), modifying the temperature of synthesis. Interesting structure changes were observed in the nanoparticles as the temperature was varied. At lower temperatures no bimetallic nanoparticles were detected, but as the temperature increased bimetallic nanoparticles started to appear, commonly obtaining core-shell nanoparticles, always covered by the polymer. This originates the modification of the optical response of the system in the UV-visible region. An absorption peak centered at 520 nm at low temperatures was observed (100-110 degrees C); at higher temperatures (130-170 degrees C) there were non detectable absorption peaks, and finally at the two highest temperatures (180-190 degrees C) the reappearance of an absorption feature centered at 510 nm was noticed. These UV-visible results indirectly imply the composition of the surface of the particle. The structure of the particles has been determined using transmission electron microscopy and high-angle annular dark field (HAADF), the latter being a powerful technique to determine the structural composition of the particles and allowing a direct correlation of the optical response with their structural composition. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies were also performed on the samples and their results support the idea of a Pt(core)-Au(shell) structure with the elements segregated from each other. The combination of these experimental techniques with calculated UV-vis absorption spectra allowed, in a reliable way, the elucidation of the nanoparticles structure and elemental distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.