We present the linear simulations of edge plasma instabilities using the 3-field peeling-ballooning model and gyro-Landau-fluid model under the BOUT++ framework. A series of realistic equilibria of shifted circular geometry are generated by a global equilibrium solver CORSICA, where the Shafranov shift, elongation effects, and bootstrap current are included. The linear growth rate spectrum of the peeling-ballooning modes is shown in a wide range of pressure gradient and parallel current density in the pedestal region. The results show that the bootstrap current stabilizes high beta ballooning modes. The simulations with different fractions of bootstrap current indicate a trend for the existence of the high beta peeling-ballooning mode stability region. Taking the kinetic effects into account, the linear simulations of kinetic peeling-ballooning mode using the gyro-Landau-fluid model show that this region can be accessed.
The TFTR tokamak has reached its original machine design specifications (I = 2.5 '1\ and B_ = 5.2T). Recently, the D* neutral beam heating power has been increased"to 6.3 MW. By operating at low plasma current (I » 0.8 HA) and low density
Results presented here are from 6-field Landau-Fluid simulations using shifted circular cross-section tokamak equilibria on BOUT++ framework. Linear benchmark results imply that the collisional and collisionless Landau resonance closures make a little difference on linear growth rate spectra which are quite close to the results with the flux limited Spitzer-Härm parallel flux. Both linear and nonlinear simulations show that the plasma current profile plays dual roles on the peeling-ballooning modes that it can drive the low-n peeling modes and stabilize the high-n ballooning modes. For fixed total pressure and current, as the pedestal current decreases due to the bootstrap current which becomes smaller when the density (collisionality) increases, the operational point is shifted downwards vertically in the Jped – α diagram, resulting in threshold changes of different modes. The bootstrap current can slightly increase radial turbulence spreading range and enhance the energy and particle transports by increasing the perturbed amplitude and broadening cross-phase frequency distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.