The profile structure of a hybrid lipid bilayer, tethered to the surface of an inorganic substrate and fully hydrated with a bulk aqueous medium in an electrochemical cell, was investigated as a function of the applied transbilayer electric potential via time-resolved neutron reflectivity, enhanced by interferometry. Significant, and fully reversible structural changes were observed in the distal half (with respect to the substrate surface) of the hybrid bilayer comprised of a zwitterionic phospholipid in response to a +100mV potential with respect to 0mV. These arise presumably due to reorientation of the electric dipole present in the polar headgroup of the phospholipid and its resulting effect on the thickness of the phospholipid’s hydrocarbon chain layer within the hybrid bilayer’s profile structure. The profile structure of the voltage-sensor domain from a voltage-gated ion channel protein within a phospholipid bilayer membrane, tethered to the surface of an inorganic substrate and fully hydrated with a bulk aqueous medium in an electrochemical cell, was also investigated as a function of the applied transmembrane electric potential via time-resolved X-ray reflectivity, enhanced by interferometry. Significant, fully-reversible, and different structural changes in the protein were detected in response to ±100mV potentials with respect to 0mV. The approach employed is that typical of transient spectroscopy, shown here to be applicable to both neutron and X-ray reflectivity of thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.