In animals, the selection in vitro of T cell lines to myelin basic protein (MBP) can define immunodominant and encephalitogenic epitopes which are preferentially associated with class II major histocompatibility (MHC) molecules. These principles were used to evaluate the specificity and MHC restriction of 14 human MBP-reactive T cell lines selected from normal individuals and patients with multiple sclerosis (MS) and other neurological diseases (OND). The four normal T cell lines recognized single, separate immunodominant MBP epitopes which were restricted by MHC molecules from the DR or in one case the DP class II locus. In contrast, the MS and OND T cell lines recognized multiple MBP epitopes, each in association with a discrete class II MHC molecule from the DR or DQ locus. Overall, HLA-DR molecules were used preferentially to associate with epitopes on human MBP, restricting 26/33 responses. As predicted from animal studies, T cells from genetically disparate individuals responded to different immunodominant epitopes on human MBP in association with distinct MHC class II molecules. HLA-DR2, which is overrepresented in MS patients, possessed an unusual capacity to restrict all eight epitopes identified on MBP in this study. These data provide the first evidence of genetically restricted human T cell recognition of potentially encephalitogenic epitopes of MBP.
Phosphorylation of myelin basic protein (MBP) in rat or rabbit brain myelin was markedly stimulated by Ca2+, and this reaction was not essentially augmented by exogenous phosphatidylserine or calmodulin or both. Solubilization of myelin with 0.4% Triton X-100 plus 4 mM EGTA, with or without further fractionation, showed that Ca2+-dependent phosphorylation of MBP required phosphatidylserine, but not calmodulin. DEAE-cellulose chromatography of solubilized myelin revealed a pronounced peak of protein kinase activity stimulated by a combination of Ca2+ and phosphatidylserine; a protein kinase stimulated by Ca2+ plus calmodulin was not detected. These findings clearly indicate an involvement of phospholipid-sensitive Ca2+-dependent protein kinase in phosphorylation of brain MBP, although a possible role for the calmodulin-sensitive species of Ca2+-dependent protein kinase in this reaction could not be excluded or established. Phosphorylation of MBP in solubilized rat myelin catalyzed by the phospholipid-sensitive enzyme was inhibited by adriamycin, palmitoylcarnitine, trifluoperazine, melittin, polymyxin B, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7).
In the Lewis rat, fragment 4>88 of the highly encephalitogenic guinea-pig basic protein has been previously shown to retain the full activity of the parent protein. In the present studies this fragment was subjected to controlled chymotryptic digestion so that cleavage occurred only at tyrosine 67, generating two peptides, residues 4 3 4 7 and residues 68-88. When compared on an equimolar basis peptide 68-88 had the same encephalitogenic activity as the intact fragment and induced the same degree of immunologically specific cell response as measured by the in uitro lymphocyte stimulation test. Peptide 68-88 was further fragmented by selective tryptic cleavage at arginine 78 after blocking lysine 73 with citraconic anhydride. The two peptides, residues 68-78 and residues 79-88, were not encephalitogenic, indicating that residues adjacent to the point of cleavage contribute to the active site.Encephalitogenic peptide CI P
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.