The application of mechanical equipment in manufacturing is becoming more and more complicated with technology development and adoption. In order to keep the high reliability and stability of the production line, reducing the downtime to repair and the frequency of routine maintenance is necessary. Since machine and components’ degradations are inevitable, accurately estimating the remaining useful life of them is crucial. We propose an integrated deep learning approach with convolutional neural networks and long short-term memory networks to learn the latent features and estimate remaining useful life value with deep survival model based on the discrete Weibull distribution. We conduct the turbofan engine degradation simulation dataset from Commercial Modular Aero-Propulsion System Simulation dataset provided by NASA to validate our approach. The improved results have proven that our proposed model can capture the degradation trend of a fault and has superior performance under complex conditions compared with existing state-of-the-art methods. Our study provides an efficient feature extraction scheme and offers a promising prediction approach to make better maintenance strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.