Abstract-Six contracts have been placed with industrial companies for the production of 1200 tons of the superconducting (SC) cables needed for the main dipoles and quadrupoles of the Large Hadron Collider (LHC). In addition, two contracts have been placed for the supply of 470 tons of NbTi and 26 tons of Nb sheets. The main characteristic of the specification is that it is functional. This means that the physical, mechanical and electrical properties of strands and cables are specified without defining the manufacturing processes. Facilities for the high precision measurements of the wire and cable properties have been implemented at CERN, such as strand and cable critical current, copper to superconductor ratio, interstrand resistance, magnetization, RRR at 4.2 K and 1.9 K. The production has started showing that the highly demanding specifications can be fulfilled. This paper reviews the organization of the contracts, the test facilities installed at CERN, the various types of measurements and the results of the main physical properties obtained on the first batches. The status of the deliveries is presented.
Rutherford-type cables made of high critical currentNb 3 Sn strands are being used in several laboratories for developing new generation superconducting magnets for present and future accelerators and upgrades. Testing of cable short samples is an important part of these R&D programs and the instability problem found in some short model magnets at Fermilab made these tests even more significant. Fermilab in collaboration with BNL, CERN and LBNL has developed sample holders and sample preparation infrastructure and procedures for testing Nb 3 Sn cable short samples at BNL and CERN test facilities. This paper describes the sample holders, sample preparation and instrumentation, and test results. Several samples made of MJR or PIT strands 1 mm in diameter have been tested. Some samples were unstable (i.e. quenched at low transport currents) at low fields and reached the critical surface at higher fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.