In the amphibian Xenopus laevis, adaptation of the skin color to background light intensity is regulated by α-melanophore-stimulating hormone (α-MSH), a proopiomelanocortin (POMC)-derived peptide. In animals adapted to a white background, the level of POMC biosynthesis in the intermediate pituitary is much lower than in animals adapted to a black background. Release of α-MSH from neurointermediate lobes of white-adapted animals is stimulated in vitro by the regulatory peptides sauvagine and thyrotropin-releasing hormone (TRH), which are produced in the magnocellular nucleus of the hypothalamus. To study the role of sauvagine, cAMP, TRH and phorbol 12-myristate 13-acetate (PMA) in the regulation of POMC biosynthesis, the degree of incorporation of radioactive amino acids into the POMC protein was determined after treatment of the neurointermediate lobes with these secretagogues. When lobes of white-adapted animals are incubated in vitro, biosynthetic activity spontaneously increases because hypothalamic inhibitory control is removed by dissection. In addition to this control situation, the effects of secretagogues were tested on lobes with an inhibited level of biosynthesis, which is achieved by addition of neuropeptide Y (NPY) to the incubation medium. After 24 h of treatment, TRH stimulated POMC biosynthesis in NPY-inhibited lobes of white-adapted animals from 40.2 to 95.3% of control level. This stimulation could not be reduced by adding PMA, which indicates that protein kinase C is not involved in the stimulation of POMC biosynthesis by TRH. Sauvagine partially restored POMC biosynthesis from 27.2 to 62.5% of control level, whereas 8-Br-cAMP completely counteracted NPY inhibition from 27.8 to 97.5% of control level. After 3 days of treatment, stimulation by sauvagine and 8-Br-cAMP was maintained (sauvagine increased POMC biosynthesis in NPY-inhibited lobes from 7.4 to 36.2% of control level and 8-Br-cAMP stimulated from 6.5 to 82.5% of control level). TRH had no effect on POMC biosynthesis after 3 days of treatment, although its receptor was still functional as was shown in superfusion experiments where TRH stimulated α-MSH secretion. The observations indicate that the neuropeptides sauvagine and TRH differently control POMC biosynthesis in the Xenopus intermediate pituitary. This differential regulation is not only apparent with regard to time aspects (sauvagine has a sustained regulatory function, whereas TRH is only effective in the initial phase of POMC biosynthesis stimulation), but also an uncoupling of biosynthetic and release processes could be shown for TRH, which did not occur with sauvagine.
In the South African clawed toad Xenopus laevis, background adaptation is regulated by alpha MSH, a POMC-derived peptide. After transfer of the animal from a black to a white background, secretion of alpha MSH from the intermediate pituitary lobe is inhibited by the hypothalamic neurotransmitter neuropeptide Y (NPY). The neurointermediate lobe in vitro is also subject to inhibitory regulation by dopamine and gamma-aminobutyric acid (GABA). In the nerve terminals contacting the intermediate lobe of the pituitary, GABA is contained in electron-lucent vesicles, whereas dopamine and NPY coexist in electron-dense vesicles. To study the role of these secreto-inhibitors in the regulation of POMC biosynthesis, the rate of incorporation of radioactive amino acids into POMC protein was determined after in vitro treatment of the neurointermediate pituitary with NPY, apomorphine (dopamine D2 receptor agonist), isoguvacine (GABAA receptor agonist) and baclofen (GABAB receptor agonist). After 24 h of treatment, inhibition of POMC biosynthesis by NPY and apomorphine was 77% and 74%, respectively. Isoguvacine treatment resulted in an inhibition of 59%, whereas no significant effect of baclofen was observed. When neurointermediate lobes were treated for 3 days, inhibition of POMC biosynthesis by NPY was maintained, and inhibition by apomorphine was even stronger, whereas isoguvacine gave an inhibition of 52%, and baclofen produced 34% inhibition. Superfusion experiments on alpha MSH secretion showed that prolonged treatment with the GABA receptor agonists results in a desensitization of GABA receptor-mediated signal transduction mechanisms, whereas the NPY receptor does not show desensitization. The observations indicate differential actions of the secreto-inhibitors NPY, apomorphine, and GABA agonists on POMC biosynthesis in the Xenopus intermediate pituitary, suggesting a major role for dopamine and NPY, whereas GABA, acting via two receptor types, does not seem to have a major function in long term control of POMC biosynthesis.
The toad Xenopus laevis is able to adapt its skin color to background light intensity. In this neuroendocrine reflex, the proopiomelanocortin (POMC)-derived peptide -melanophore-stimulating hormone ( MSH) is a key regulatory factor. In animals adapting to a black background, release of MSH from the pituitary pars intermedia causes dispersal of melanin in skin melanophores. To investigate the long-term in vivo dynamics of MSH production during black background adaptation, the biosynthetic rate of POMC and the contents of POMC, MSH and the POMC processing enzyme precursor convertase 2 (PC2) have been studied in the pars intermedia using pulse-labeling, Western blot and radioimmunoassay. In control animals, adapted to a white background, the rate of POMC biosynthesis and the POMC content were low, while high MSH and PC2 contents were found. After 1 week of adaptation to a black background, the rate of POMC biosynthesis and the POMC protein content had increased 19-and 3·7-fold respectively. These parameters attained a maximum level (28-and 5·8-fold higher than control) after 3 weeks and remained at these elevated levels for at least 12 weeks. After 1 week, the pars intermedia content of MSH was only 30% of the control level, but after 6 and 12 weeks, the MSH level had increased to the control level. The PC2 content decreased to 52% of control after 1 week and stabilized after 3 weeks at a level slightly lower than the control value. The results show that during long-term background adaptation a steady-state situation is reached, with a balance between the biosynthesis, enzymatic processing and release of MSH. The in vivo dynamics of the processing enzyme PC2 suggest a parallel storage and release of MSH and mature PC2 in the Xenopus pituitary pars intermedia.
In the South African clawed toad Xenopus laevis, background adaptation is regulated by alpha MSH, a POMC-derived peptide. After transfer of the animal from a black to a white background, secretion of alpha MSH from the intermediate pituitary lobe is inhibited by the hypothalamic neurotransmitter neuropeptide Y (NPY). The neurointermediate lobe in vitro is also subject to inhibitory regulation by dopamine and gamma-aminobutyric acid (GABA). In the nerve terminals contacting the intermediate lobe of the pituitary, GABA is contained in electron-lucent vesicles, whereas dopamine and NPY coexist in electron-dense vesicles. To study the role of these secreto-inhibitors in the regulation of POMC biosynthesis, the rate of incorporation of radioactive amino acids into POMC protein was determined after in vitro treatment of the neurointermediate pituitary with NPY, apomorphine (dopamine D2 receptor agonist), isoguvacine (GABAA receptor agonist) and baclofen (GABAB receptor agonist). After 24 h of treatment, inhibition of POMC biosynthesis by NPY and apomorphine was 77% and 74%, respectively. Isoguvacine treatment resulted in an inhibition of 59%, whereas no significant effect of baclofen was observed. When neurointermediate lobes were treated for 3 days, inhibition of POMC biosynthesis by NPY was maintained, and inhibition by apomorphine was even stronger, whereas isoguvacine gave an inhibition of 52%, and baclofen produced 34% inhibition. Superfusion experiments on alpha MSH secretion showed that prolonged treatment with the GABA receptor agonists results in a desensitization of GABA receptor-mediated signal transduction mechanisms, whereas the NPY receptor does not show desensitization. The observations indicate differential actions of the secreto-inhibitors NPY, apomorphine, and GABA agonists on POMC biosynthesis in the Xenopus intermediate pituitary, suggesting a major role for dopamine and NPY, whereas GABA, acting via two receptor types, does not seem to have a major function in long term control of POMC biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.