We have previously reported that certain genes of the HOX2 cluster of homeobox genes on human chromosome 17 are specifically expressed in human leukemic cell lines with erythroid potential, suggesting that these genes are involved in hematopoietic differentiation. We now show that the expression of the HOX 2.2 gene decreases during erythropoietin‐induced differentiation of the erythroid cell line MB02. In order to study the role of the HOX 2.2 homeobox gene in hematopoiesis, vectors producing sense or antisense transcripts were introduced into K562 and HEL cells, pluripotent lines with erythroid and myeloid features. Overexpression of HOX 2.2 is associated with loss of erythroid features in both lines and an increase in certain myelomonocytic markers in K562 cells. Expression of antisense HOX 2.2 is associated with an increase in erythroid features in HEL cells and a mild decrease in myeloid characteristics in K562 cells. Overexpression of the adjacent HOX 2.1 gene in K562 cells does not produce similar phenotype changes. These data demonstrate that modulation of a specific HOX 2 homeobox gene can change the phenotype of somatic cells and suggest that certain HOX 2 genes play a role in blood cell differentiation.
The cells of the enamel organ are programmed by signals such as growth factors and extracellular matrix components to differentiate and form dental enamel. To study how the enamel organ epithelial cells control enamel development, we have begun to characterize a primary porcine enamel organ epithelial cell culture system. The unerupted molars of 3 month old pigs were isolated, the cells were digested into a single cell suspension and grown in media either with or without serum. Expression of amelogenin and ameloblastin mRNA was monitored by RT PCR, and protein secretion was identified by immunohistochemistry. Cells grown in MEM formed a mixed cell population of epithelial- and fibroblast-like cells which grew past confluence, formed nodules, mineralized, and expressed low levels of amelogenin and ameloblastin protein. In LHC-9 media, which is selective for epithelial cells, the cells did not grow past confluence but secreted amelogenin and ameloblastin proteins more strongly. Cell viability was maintained in both serum-free and serum-containing media. However, in the serum-free media, cell proliferation proceeded slowly. Although cells grown in MEM mineralized, the mixed cell population may make studies of specific ameloblast-like cells more difficult. However, cells grown in a culture media selective for epithelial cells will require modifications such as cell immortalization to allow long term studies of cell regulation and interaction. In summary, we have established an enamel organ epithelial cell culture system which will enable us to study the role of ameloblasts in enamel matrix formation, ameloblast regulation, as well as cell-matrix interactions. Selection of specific culture conditions will depend on the questions being addressed in individual studies.
Enamel is secreted as a protein matrix by the ameloblasts. These same cells then control the maturation of the enamel matrix, secreting proteinases that hydrolyze proteins as mineralization progresses, until mature enamel containing less than 1% protein by weight remains. Further understanding of the factors that control ameloblast function and differentiation requires an in vitro cell culture system. In this study, we report immortalization of enamel organ epithelial cells and the selection of a cell line with characteristics of ameloblasts. Porcine enamel organ cells were dissected from unerupted porcine molars, cultured in serum-free medium, and passaged twice. These cells were transfected with an origin-of-replication defective SV40 plasmid by calcium phosphate precipitation, and a cell line with mRNA expression characteristic of ameloblasts was cloned. This cell line (PABSo-E) expressed mRNA for amelogenin, matrix metalloproteinase-20 (enamelysin), and enamel matrix serine proteinase 1 (EMSP1), but not ameloblastin. PABSo-E cells have been passaged more than 55 times, while continuing to maintain characteristics of ameloblasts. These cells will be useful for future studies of ameloblast function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.