Experimental and numerical investigations are carried out on an annular, straight flow, swirl-stabilized aero engine combustor. In this work, the effect of degree and direction of swirl at the inlet of combustion chamber is examined on the liner wall temperature and hot spots. This is carried out by experimentally measuring the liner outer wall temperature at discrete positions along the circumferential and axial directions of the combustor liner in the engine test facility. The RANS based turbulence modeling with reacting flow approach is used to simulate the flow domain. Conjugate heat transfer analysis is used to estimate the liner wall temperature using Ansys CFX frame work. The degree and direction of swirl at the inlet of combustion chamber is found to alter the velocity and temperature profiles inside the combustor and hence found to have a significant effect on the liner hot spots and its location. Hotspot with 43 % increase in temperature near the secondary zone is observed with the increase in swirl angle from 5° to 15° at the combustor inlet. The location of the hotspot is found to be dependent on the swirl direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.