In addition to four known metabolites (4-acetyl-6,8-dihydroxy-5-methylisocoumarin, 6,8-dihydroxy-3-methylisocoumarin, 6,8-dihydroxy-3,5,7-trimethylisocoumarin and 3,3'-oxy-(5-methyl)-phenol), bioassay-guided fractionation of the culture of Keissleriella sp., a marine filamentous fungus (strain number: YS 4108), afforded an antifungal metabolite with a new carbon skeleton whose structure was elucidated spectrometrically as 3,6,8-trihydroxy-3-[3,5-dimethyl-2-oxo-3(E)-heptenyl]-2,3-dihydronaphthalen-1(4H)-one. In vitro antifungal assays of all isolates revealed that the new metabolite and 3,3'-oxybis[5-methylphenol] were inhibitory to the growth of the human pathogenic fungi Candida albicans, Tricophyton rubrum and Aspergillus niger with MICs of the former being 40, 20 and 80 microg/ml, and those of the latter 10, 30 and 50 microg/ml, respectively.
In order to purify enough material for establishing the absolute stereochemistry of the new antifungal metabolite 3,6,8-trihydroxy-3-[3,5-dimethyl-2-oxo-3(E)-heptenyl]-2,3-dihydronaphthalen-1(4H)-one produced by Keissleriella sp., a marine filamentous fungus (strain number: YS 4108), a repeated growth and fractionation of the fungal culture was performed to give instead a new antimicrobial metabolite, keisslone (1), the structure of which was elucidated on the basis of spectral analyses including homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC). The absolute configuration of metabolite 1 was determined mainly by its CD data and NOESY spectrum. The compound 1 was shown to be inhibitory against the human pathogenic fungi Candida albicans, Trichophyton rubrum and Aspergillus niger with MICs of 50, 70, 40 microg/mL, respectively. In order to purify enough material for establishing the absolute stereochemistry of the new antifungal metabolite 3,6,8-trihydroxy-3-[3,5-dimethyl-2-oxo-3(E)-heptenyl]-2,3-dihydronaphthalen-1(4 H)-one produced by Keissleriella sp., a marine filamentous fungus (strain number: YS 4108), a repeated growth and fractionation of the fungal culture was performed to give instead a new antimicrobial metabolite, keisslone (1), the structure of which was elucidated on the basis of spectral analyses including homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC). The absolute configuration of metabolite 1 was determined mainly by its CD data and NOESY spectrum. The compound 1 was shown to be inhibitory against the human pathogenic fungi Candida albicans, Trichophyton rubrum and Aspergillus niger with MICs of 50, 70, 40 microg/mL, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.