Attempts were made to synthesize high quality graphite oxide (GO) and reduced graphene oxide (rGO) by using successive oxidation-reduction process of high quality vein graphite from Sri Lanka. We report the lowest optimum reduction temperature for converting GO to rGO which has been systematically studied using X-ray diffraction spectroscope (XRD) with the high temperature heating attachment (HTA) for the first time. The effect of particle size of graphite on properties of GO and rGO is also compared using commercially available graphite of particle size of ~111 mm and ball-milled graphite of particle size ~37 mm. The GO and rGO were characterized using XRD, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The GO and rGO synthesized from ball-milled graphite showed higher oxidation and reduction properties as verified through the UV-Vis and FTIR analysis. The SEM analysis revealed that the splitting of graphene layers is efficiently taken place in GO from ball-milled graphite. The lowest optimum temperature for thermal reduction of GO to rGO was found to be at 475 °C. FTIR confirmed the removal of most of the functional groups in rGO and according to the BET surface area analysis few layers, supposed to be 2-6 is formed. The efficient oxidation and reduction process of smaller particle size graphite has led to yield highly oxidized GO and high quality rGO which can be used to prepare high quality graphene for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.