Pulse laser ablation and subsequent laser nanostructuring at room temperature has been employed to produce nanostructured Ni on SiO 2 /Si substrates for catalytic growth of carbon nanotubes. The resultant nanostructured surface is seen to consist of nanometer sized hemispherical droplets whose mean diameter is controlled by the initial metal thickness, which in turn is readily controlled by the number of laser pulses. Vertically aligned multiwall carbon nanotube mats were then grown using conventional plasma enhanced chemical vapor deposition. We show that within a single processing technique it is possible to produce the initial metal-on-oxide thin film to a chosen thickness but also to be able to alter the morphology of the film to desired specifications at low macroscopic temperatures using the laser parameters. The influence of the underlying oxide is also explored to explain the mechanism of nanostructuring of the Ni catalyst.
Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 [Formula: see text] and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 [Formula: see text] at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process.
Low threshold fields of 1.6 V/μm and 2.6 V/μm were obtained for field emission from multiwalled carbon nanotubes and boron-doped multiwalled carbon nanotubes embedded in polystyrene, respectively. A Fowler–Nordheim analysis of the results together with sheet resistivity data illustrate that the higher carbon nanotube concentrations in a polystyrene matrix result in larger effective emission areas, at the expense of higher operating threshold fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.