In support of Superfund re-authorization legislation, the Division of Toxicology of the Agency for Toxic Substances and Disease Registry (ATSDR) prepared a chemical-specific consultation document for Congress that identified those chemicals with carcinogenic, neurological, or developmental adverse effects having a latency period longer than 6 years. The review was limited to the top 50 substances listed on ATSDR's 1997 Priority List of Hazardous Substances (Priority List). Among the top 50 chemicals, a review of the technical literature indicated that 38 (76%) were classified as "reasonably anticipated," "possibly," or "probably" capable of causing cancer in humans, based either on human and animal data. Eight chemicals (16%) had well-established cancer latency periods in humans of 6 years or more following exposure. Three substances (6%)--arsenic, creosote, and benzidine--had data indicating latency periods longer than 6 years. The technical literature review likewise confirmed the potential for neurological and developmental effects with a latency of 6 years. Twenty-seven (54%) of the top 50 substances caused acute and/or chronic neurotoxic effects; a number of these also caused neurological effects that persisted beyond 6 years (or the equivalent in animal studies) such as: behavioral problems, neurological deficiencies, reduced psychomotor development, cognitive deficiencies, and reduced IQ. Twenty-eight substances (56%) caused adverse developmental effects in offspring of exposed individuals or animals including increased fetal and infant mortality, decreased birth weights and litter sizes, and growth delays. Latency periods for related chemicals are expected to be similar due to structural and toxicological similarities.
In support of Superfund re-authorization legislation, the Division of Toxicology of the Agency for Toxic Substances and Disease Registry (ATSDR) prepared a chemical-specific consultation document for Congress that identified those chemicals with carcinogenic, neurological, or developmental adverse effects having a latency period longer than 6 years. The review was limited to the top 50 substances listed on ATSDR's 1997 Priority List of Hazardous Substances (Priority List). Among the top 50 chemicals, a review of the technical literature indicated that 38 (76%) were classified as "reasonably anticipated," "possibly," or "probably" capable of causing cancer in humans, based either on human and animal data. Eight chemicals (16%) had well-established cancer latency periods in humans of 6 years or more following exposure. Three substances (6%)--arsenic, creosote, and benzidine--had data indicating latency periods longer than 6 years. The technical literature review likewise confirmed the potential for neurological and developmental effects with a latency of 6 years. Twenty-seven (54%) of the top 50 substances caused acute and/or chronic neurotoxic effects; a number of these also caused neurological effects that persisted beyond 6 years (or the equivalent in animal studies) such as: behavioral problems, neurological deficiencies, reduced psychomotor development, cognitive deficiencies, and reduced IQ. Twenty-eight substances (56%) caused adverse developmental effects in offspring of exposed individuals or animals including increased fetal and infant mortality, decreased birth weights and litter sizes, and growth delays. Latency periods for related chemicals are expected to be similar due to structural and toxicological similarities.
The Agency for Toxic Substances and Disease Registry (ATSDR) uses the weight of evidence methodology to evaluate interactions of chemical mixtures. In the process, toxicity, toxicokinetics, and toxicodynamics of chemical components of the mixture are carefully examined. Based on the evaluation, predictions are made that can be used in real-life situations at hazardous waste sites. In this paper, health outcomes were evaluated for a mixture of eight compounds that were found at a specific site. These eight chemicals were identified and possibly associated with human exposure. The health assessors could consider similar thought processes when evaluating chemical mixtures at hazardous waste sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.