We explore the interrelationships between the green 510 nm emission, the free-carrier concentration, and the paramagnetic oxygen-vacancy density in commercial ZnO phosphors by combining photoluminescence, optical-absorption, and electron-paramagnetic-resonance spectroscopies. We find that the green emission intensity is strongly influenced by free-carrier depletion at the particle surface, particularly for small particles and/or low doping. Our data suggest that the singly ionized oxygen vacancy is responsible for the green emission in ZnO; this emission results from the recombination of a photogenerated hole with the singly ionized charge state of this defect.
The ultraviolet photoluminescence of ZnO/ZnGa 2 O 4 composite layer grown by the thermal oxidation of ZnS with gallium was investigated by the time-resolved pho-toluminescence as a function of measuring temperature and excitation power. With increase of excitation power, the D 0 X emission is easily saturated than the DAP emission from ZnO/ZnGa 2 O 4 composite layer, and which is dramatically enhanced as compared with that from pure ZnO layer grown without gallium. The radiative re-combination process with ultra-long lifetime controlled the carrier recombination of ZnO/ZnGa 2 O 4 composite layer. C
GaN samples, containing various concentrations of carbon and doped intentionally with silicon, have been grown heteroepitaxially on sapphire using metal–organic chemical-vapor deposition. These samples have been characterized by a variety of electrical and optical techniques, and the resulting experimental data are compared to density-functional-theory calculations of the formation energies and electronic states of substitutional and interstitial carbon in hexagonal GaN. We find that in samples where the silicon concentration exceeds that of carbon, carbon sits in the N substitutional site, acting as an acceptor and partially compensating the material. However, when carbon densities exceed those for Si, GaN becomes semi-insulating due to carbon occupation of both N and Ga substitutional lattice sites, and a new luminescence peak appears at ∼3 eV. Calculated formation energies of carbon in both sites are strong functions of both the Fermi level and growth stoichiometry. The former dependence gives rise to self-compensation when [C]>[Si] because the formation energy of the Ga substitutional configuration (the donor state) becomes equal to that of the N substitutional site, effectively pinning the Fermi level as it approaches midgap. Our results suggest that effective p-type doping of GaN can only be achieved under Ga-rich growth conditions.
A model is developed to describe the potential barriers which often occur at grain boundaries in polycrystalline semiconductors. The resistance of such materials is determined by thermionic emission over these barriers. The dc grain-boundary current density as a function of applied voltage is calculated using several forms for the density of defect states within the boundary region. In all cases, the currents are Ohmic at low voltages; they can attain a quasisaturated level at intermediate voltages, and they display a sharp bias dependence at high voltages. The details of the intermediate and high-voltage characteristics are found to depend strongly on the grain-doping density and on the density and energy distribution of defect states at the grain boundary. Contrary to previous assertions, we find that the large current-voltage nonlinearities found in real materials are most likely associated with defect-state densities that decrease above the zero-bias Fermi level. The results of the model are compared with previous experimental data on Si and Ge bicrystals and on polycrystalline ZnO varistors. Finally, a detailed method for determining the energy density of grain-boundary defect states from current-voltage data is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.