Occupancy-based strategies for the control of ventilation systems in buildings are effective for achieving energy savings and user comfort. Savings in energy consumption of more than 50% can be achieved by controlling heat, ventilation, and air conditioning (HVAC) systems with accurate sensory and occupancy information. In this study, the flow through the damper of the variable area valve (VAV) system and the speed of the blower’s variable frequency drive (VFD) are controlled in the HVAC system, on the basis of human occupancy and indoor parameters, namely, temperature and humidity, segment-wise in the building. In the proposed model, the flapper angle of the VAV is estimated using the indoor temperature, external temperature, and number of occupants. The occupancy data are fed to the controller proposed to regulate the flow through the ducts of the system, which is based on the flapper angle of the VAV, in order to maintain human comfort. The proposed scheme makes it possible to detect abnormalities in energy utilization and to trace maximum utilization in the building based on occupancy, with the control parameters of the HVAC adjusted for a comfortable indoor environment. Performance evaluation of the VAV system with its proposed control strategy, temperature, and flow distribution is simulated using Fluent software. A laboratory grade prototype incorporating the proposed control strategy is then developed, tested under three different conditions, and the results are reported. The experimental results show that an energy saving of 18% can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.