Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight.
The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade of intracellular events ending in activation of uncoupling protein-1 (UCP-1). BAT also has sensory innervation that may function to monitor BAT lipolysis, a response necessary for activation of UCP-1 by fatty acids, or perhaps responding in a feedback manner to BAT temperature changes. The central sympathetic outflow circuits ultimately terminating in BAT have been revealed by injecting the retrograde viral transneuronal tract tracer, pseudorabies virus, into the tissue; moreover, there is a high degree of colocalization of melanocortin 4-receptor mRNA on these neurons across the neural axis. The necessary and sufficient central BAT SNS outflow sites that are activated by various thermogenic stimuli are not precisely known. In a chronic decerebration procedure, IBAT UCP-1 gene expression can be triggered by fourth ventricular injections of melanotan II, the melanocortin 3/4 receptor agonist, suggesting that there is sufficient hindbrain neural circuitry to generate thermogenic responses with this stimulation. The recent recognition of BAT in normal adult humans suggests a potential target for stimulation of energy expenditure by BAT to help mitigate increased body fat storage.
Summary Circulating factors are typically invoked to explain bidirectional communication between the CNS and white adipose tissue (WAT). Thus, initiation of lipolysis has been relegated primarily to adrenal medullary secreted catecholamines and the inhibition of lipolysis primarily to pancreatic insulin, whereas signals of body fat levels to the brain have been ascribed to adipokines such as leptin. By contrast, evidence is given for bidirectional communication between brain and WAT occurring via the sympathetic nervous system (SNS) and sensory innervation of this tissue. Using retrograde transneuronal viral tract tracers, the SNS outflow from brain to WAT has been defined. Functionally, sympathetic denervation of WAT blocks lipolysis to a variety of lipolytic stimuli. Using anterograde transneuronal viral tract tracers, the sensory input from WAT to brain has been defined. Functionally, these WAT sensory nerves respond electrophysiologically to increases in WAT SNS drive suggesting a possible neural negative feedback loop to regulate lipolysis.
Song CK, Vaughan CH, Keen-Rhinehart E, Harris RB, Richard D, Bartness TJ. Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol 295: R417-R428, 2008. First published June 11, 2008 doi:10.1152/ajpregu.00174.2008.-A precise understanding of neural circuits controlling lipid mobilization and thermogenesis remains to be determined. We have been studying the sympathetic nervous system (SNS) contributions to white adipose tissue (WAT) lipolysis largely in Siberian hamsters. Central melanocortins are implicated in the control of the sympathetic outflow to WAT, and, moreover, the melanocortin 4 receptors (MC4-R) appear to be principally involved. We previously found that acute third ventricular melanotan II (MTII; an MC3/4-R agonist) injections increase sympathetic drive (norepinephrine turnover) to interscapular brown adipose tissue (IBAT) and IBAT temperature. Here we tested whether MC4-R mRNA is expressed in IBAT SNS outflow neurons using in situ hybridization for the former and injections of the transneuronal viral retrograde tract tracer, pseudorabies virus (PRV) into IBAT, for the latter. Significant numbers of double-labeled cells for PRV and MC4-R mRNA were found across the neuroaxis (mean of all brain sites ϳ60%), including the hypothalamic paraventricular nucleus (PVH; ϳ80%). Acute parenchymal MTII microinjections into the PVH of awake, freely-moving hamsters, using doses below those able to increase IBAT temperature when injected into the third ventricle, increased IBAT temperature for as long as 4 h, as measured by temperature transponders implanted below the tissue. Collectively, these data add significant support to the view that central melanocortins are important in controlling IBAT thermogenesis via the SNS innervation of this tissue, likely through the MC4-Rs.Siberian hamsters; in situ hybridization; pseudorabies virus; tract tracing; melanocortins A COMPLETE UNDERSTANDING OF the neural circuits controlling the sympathetic nervous system (SNS) mobilization of lipid from white adipose tissue (WAT) and those triggering thermogenesis in brown adipose tissue (BAT) remain to be determined, although our knowledge has increased markedly in the past decade (for review, see Refs. 6 and 16). We have been studying the SNS contributions to the reversal of the naturally-occurring seasonal obesity of Siberian hamsters (Phodopus sungorus; for a review, see Ref. 5) in WAT, and to a lesser extent BAT (4,11,12,18,49). Of the many remaining unknown details of the SNS outflow circuitry to WAT and BAT is the identification of their neurochemical phenotype, although some progress has been made for both tissues (e.g., 8,39,48,51,53,56). One of the neurochemicals strongly implicated in the sympathetic control of these adipose tissues is the melanocortins (for review, see Refs. 6 and 45). The most important members of the melanocortin family for the control of energy balance is ␣-melanocyte stimulating hor...
Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.