The crystallinity of polycrystalline germanium (poly-Ge) films were demonstrated through continuous-wave laser crystallization (CLC) with Gaussian-distribution beam profile. The different grain sizes of CLC poly-Ge were observed in their three crystallization regions, which were 2 μm, 680 nm, and 90 nm for the central, transition, and edge regions, respectively. Furthermore, the relation between crystallinity and carrier types in these three regions of counter-doped CLC poly-Ge films were investigated. In the central and transition regions, the CLC poly-Ge films with relatively low hole concentration were easily converted to n-type poly-Ge films through a counter-doping process. In contrast, the edge region with poor crystallinity exhibited p-type behavior due to high defect-generated hole concentration. According to these material properties of counter-doped CLC poly-Ge films, the corresponding transfer characteristics of p-channel poly-Ge thin-film transistor for three crystallization regions were further investigated. Subsequently, high-performance p-channel poly-Ge thin-film transistors in the central region exhibited a superior field-effect mobility of 792.2 cm 2 /V-s.INDEX TERMS Polycrystalline germanium (poly-Ge), continuous-wave laser crystallization (CLC), counter-doping (CD), thin-film transistor (TFT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.