Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.
This article describes both electrochemical deposition and electrophoretic deposition of high-density tellurium (Te) nanowire arrays with wire diameters of 60 nm and lengths of 15–20 μm in the nanochannels of anodic aluminum oxide (AAO) templates. The Te nanowires synthesized via electrochemical deposition (ECD) are generally single crystalline in nature with the wire longitudinal axis along the [001] direction, whereas those synthesized via electrophoretic deposition (EPD) show polycrystalline structures with numerous tiny Te crystallites packed randomly in the wires. The single-crystalline Te nanowires produced by the ECD route are believed to form under a near chemical equilibrium condition; however, the imposed transport and the rapid packing of Te nanocrystallites in the nanochannels of AAO template in external fields lead to polycrystalline Te nanowires in the EPD process. This comparative study of the Te nanowire formation in the nanochannels of AAO template will facilitate the tailoring of the growth of other inorganic nanowires of high quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.