Despite a long-standing assertion that mammalian testes operate near hypoxia and increased testicular temperature causes frank hypoxia, we have preliminary evidence that changes are due to hyperthermia per se. The objective was to determine how variations in inspired oxygen concentration affected testicular blood flow, oxygen delivery and extraction, testicular temperature and lactate production. Eight rams were maintained under general anesthesia, with successive decreases in oxygen concentration in inspired air (100, 21 and 13%, respectively). As oxygen concentration decreased from 100 to 13%, there were increases in testicular blood flow (9.6 ± 1.7 vs 12.9 ± 1.9 ml/min/100 g of testis, P < 0.05; mean ± SEM) and conductance (normalized flow; 0.46 ± 0.07 to 1.28 ± 0.19 ml/min/mm Hg/100 g testis (P < 0.05). Increased testicular blood flow maintained oxygen delivery and increased testicular temperature by ~1 °C; this increase was correlated to increased testicular blood flow (r = 0.35, P < 0.0001). Furthermore, oxygen utilization increased concomitantly and there were no significant differences among oxygen concentrations in blood pH, HCO3− or base excess, and no effects of venous-arterial differences in lactate production. In conclusion, under acute hypoxic conditions, testes maintained oxygen delivery and uptake by increasing blood flow and oxygen extraction, with no evidence of anaerobic metabolism. However, additional studies are needed to determine longer-term responses and potential evidence of anaerobic metabolism at the molecular level.
There is a paradigm that testicular hyperthermia fails to increase testicular blood flow and that an ensuing hypoxia impairs spermatogenesis. However, in our previous studies, decreases in normal and motile spermatozoa after testicular warming were neither prevented by concurrent hyperoxia nor replicated by hypoxia. The objective of the present study was to determine the effects of increasing testicular temperature on testicular blood flow and O2 delivery and uptake and to detect evidence of anaerobic metabolism. Under general anaesthesia, the testicular temperature of nine crossbred rams was sequentially maintained at ~33°C, 37°C and 40°C (±0.5°C; 45min per temperature). As testicular temperature increased from 33°C to 40°C there were increases in testicular blood flow (13.2±2.7 vs 17.7±3.2mLmin−1 per 100g of testes, mean±s.e.m.; P<0.05), O2 extraction (31.2±5.0 vs 47.3±3.1%; P<0.0001) and O2 consumption (0.35±0.04 vs 0.64±0.06mLmin−1 per 100g of testes; P<0.0001). There was no evidence of anaerobic metabolism, based on a lack of change in lactate, pH, HCO3− and base excess. In conclusion, these data challenge the paradigm regarding scrotal–testicular thermoregulation, as acute testicular hyperthermia increased blood flow and tended to increase O2 delivery and uptake, with no indication of hypoxia or anaerobic metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.