A new specific DNA cleavage protein, Gly-Lys-His-Fos(138-211), was designed, expressed, and characterized. The DNA-binding component of the design uses the basic and leucine zipper regions of the leucine zipper Fos, which are represented by Fos(138-211). The DNA cleavage moiety was provided by the design of the amino-terminal Cu(II)-, Ni(II)-binding site GKH at the amino terminus of Fos(138-211). Binding of Cu(II) or Ni(II) by the protein activates its cleavage ability. The GKH motif was predicted to form a specific amino-terminal Cu(II)-, Ni(II)-binding motif as previously defined [Predki, P. F., Harford, C., Brar, P., & Sarkar, B. (1992) Biochem. J. 287, 211 -215]. This prediction was verified as the tripeptide, GKH, and the expressed protein, GKH-Fos(138-211), were both shown to be capable of binding Cu(II) and Ni(II). The designed protein upon heterodimerization with Jun(248-334) was shown to bind to and cleave several forms of DNA which contained an AP-1 binding site. The cleavage was shown to be specific. This design demonstrates the versatility of the amino-terminal Cu(II)-, Ni(II)-binding motif and the variety of motifs which can be generated. The site of cleavage by GKH-Fos(138-211) on DNA provides further information regarding the bending of DNA upon binding to Fos-Jun heterodimers.
We have investigated the Cu(II)- and Ni(II)-binding properties of chicken serum albumin (CSA) and of the native sequence tripeptide derived from the N-terminus of this protein. Spectrophotometric and equilibrium dialysis experiments demonstrate that Cu(II) and Ni(II) bind non-specifically at the N-terminus of CSA. Proton displacement studies show that the histidine residue in the fourth position of the protein does not appear to participate in the binding of the two metals. Consistent results were obtained with the native sequence tripeptide L-aspartyl-L-alanyl-L-glutamic acid N-methylamide. The results presented here demonstrate that neither the glutamic acid residue in the third position nor the histidine in the fourth position participate in the binding of Cu(II) and Ni(II) to CSA. It is known, however, that a number of other albumins with a histidine residue in the third position possess high-affinity Cu(II)- and Ni(II)-binding sites. Our results provide further evidence that the N-terminal Cu(II)/Ni(II)-binding motif requires a histidine at the third position in order to bind Cu(II) and Ni(II) specifically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.